Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

The development of self-optimizing systems is a highly interdisciplinary task, as several domains are involved. Existing design methodologies do not adress this issue, as they focus on the respective domain; a holistic domain-spanning consideration of the system occurs - if at all - only rudimentally. The partial solutions developed by the respective domains may be optimal from the point of view of this domain. However, it does not automatically mean, that the sum of the optimal domain-specific solutions forms the best possible overall solution: ”the whole is more than the sum of its parts”. This especially holds true for the early design phase, the conceptual design. Its result is the so-called principle solution, which is further refined in the domain-specific design and development. Thus, a great need for methods arises which support the domain-spanning conceptual design for self-optimizing systems in a holistic manner. In this chapter we will introduce such methods. In particular, we will explain the specification technique for the domain-spanning description of the principle solution of a self-optimizing system. Furthermore, methods are explained which support the creation of the principle solution. This includes a method to ensure the consistency of application scenarios, a method for the design of the system of objectives, which is crucial for a self-optimizing system, as well as a method for the re-use of proven solutions for recurring problems (solution patterns). Finally, some analysis methods are explained that are performed on the specification of the principle solution. These are: the early analysis of the reliability and the analysis of the economic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdhlking, I., Angel, S.: A Pattern Language. Oxford University Press, Oxford (1977)

    Google Scholar 

  2. Backhaus, K.: Industriegütermarketing, 13th edn. Vahlen, München (2003)

    Google Scholar 

  3. Backhaus, K., Erichson, B., Plinke, W., Weiber, R.: Multivariate Analysemethoden - Eine anwendungsorientierte Einführung, 13th edn. Springer, Heidelberg (2011)

    Google Scholar 

  4. Bertsche, B.: Reliability in Automotive and Mechanical Engineering - Determination of Component and System Reliability. Springer, Heidelberg (2008)

    Google Scholar 

  5. Birkhofer, H.: Analyse und Synthese der Funktionen technischer Produkte. Ph.D. thesis, Technische Universität Braunschweig, VDI-Verlag, Düsseldorf (1980)

    Google Scholar 

  6. Birolini, A.: Reliability Engineering - Theory and Practice, 5th edn. Springer, Heidelberg (2007)

    Google Scholar 

  7. Clark, N.: The Airbus Saga - Crossed Wires and a Multibillion-euro Delay - Business - International Herald Tribune, http://www.nytimes.com/2006/12/11/business/worldbusiness/11iht-airbus.3860198.html?pagewanted=all (accessed July 1, 2013)

  8. Deyter, S., Gausemeier, J., Kaiser, L., Poeschl, M.: Modeling and Analyzing Fault-Tolerant Mechatronic Systems. In: Proceedings of the 17th International Conference on Engineering Design, Stanford (2009)

    Google Scholar 

  9. Dorociak, R.: Early Probabilistic Reliability Analysis of Mechatronic Systems. In: Proceedings of the Reliability and Maintainability Symposium (2012)

    Google Scholar 

  10. Dumitrescu, R.: Entwicklungssystematik zur Integration kognitiver Funktionen in fortgeschrittene mechatronische Systeme. Ph.D. thesis, Fakultät für Maschinenbau, Universität Paderborn, HNI-Verlagsschriftenreihe, Band 286, Paderborn (2011)

    Google Scholar 

  11. Ehrlenspiel, K.: Integrierte Produktentwicklung, 2nd edn. Carl Hanser Verlag, München (2003)

    Google Scholar 

  12. Ehrlenspiel, K., Kiewert, A., Lindemann, U.: Cost-Efficient Design. Springer, Heidelberg (2007)

    Book  Google Scholar 

  13. for Electrotechnical Standardization (CENELEC), E.C.: CENELEC EN 50129: 2003. Railway Applications - Communication, Signalling and Processing Systems - Safety Related Electronic Systems for Signalling. Norm (2003)

    Google Scholar 

  14. Eppinger, S., Whitney, D., Smith, R., Gebala, D.: A Model-Based Method for Organizing Tasks in Product Development - Reserarch in Engineering Design. Springer, Heidelberg (1994)

    Google Scholar 

  15. Ericson, C.: Hazard Analysis Techniques for System Safety. John Wiley & Sons, Hoboken (2005)

    Book  Google Scholar 

  16. Erixon, G.: Modular Function Deployment - A Method for Product Modularization. Ph.D. thesis, Royal Institute of Technology, KTH, Stockholm (1998)

    Google Scholar 

  17. Fenelon, P., McDermid, J.A., Nicolson, M., Pumfrey, D.J.: Towards Integrated Safety Analysis and Design. ACM SIGAPP Applied Computing Review 2(1), 21–32 (1994)

    Article  Google Scholar 

  18. Frank, U.: Spezifikationstechnik zur Beschreibung der Prinziplösung selbstoptimierender Systeme. Ph.D. thesis, Fakultät für Maschinenbau, Universität Paderborn, HNI-Verlagsschriftenreihe, Band 26, Paderborn (2006)

    Google Scholar 

  19. Freeman, R.E.: Strategic Management – A Stakeholder Approach. Pitman, Marschfield (1984)

    Google Scholar 

  20. Friedenthal, S., Steiner, R., Moore, A.C.: Practical Guide to SysML: The Systems Modeling Language. Elsevier, Amsterdam (2008)

    Google Scholar 

  21. Gausemeier, G., Plass, C., Wenzelmann, C.: Zukunftsorientierte Unternehmensgestaltung - Strategien, Geschäftsprozesse und IT-Systeme für die Produktion von morgen. Carl Hanser Verlag, München (2009)

    Google Scholar 

  22. Gausemeier, J., Brandis, R., Kaiser, L.: Integrative Conceptual Design of Products and Production Systems of Mechatronic Systems. In: Procedings of the Workshop on Research and Education in Mechatronics, Paris (2012)

    Google Scholar 

  23. Gausemeier, J., Dorociak, R., Pook, S., Nyssen, A., Terfloth, A.: Computer-Aided Cross-Domain Modeling of Mechatronic Systems. In: Proceedings of the International Design Conference, Dubrovnik (2010)

    Google Scholar 

  24. Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Description of Self-optimizing Mechatronic Systems. Research in Engineering Design 20(4), 201–223 (2009)

    Article  Google Scholar 

  25. Gausemeier, J., Kaiser, L., Pook, S.: FMEA von komplexen mechatronischen Systemen auf Basis der Spezifikation der Prinziplösung. ZWF 11 (2009)

    Google Scholar 

  26. Gausemeier, J., Rammig, F.J., Schäfer, W., Sextro, W. (eds.): Dependability of Self-optimizing Mechatronic Systems. Springer, Heidelberg (2014)

    Google Scholar 

  27. Gausemeier, J., Steffen, D., Donoth, J., Kahl, S.: Conceptual Design of Modularized Advanced Mechatronic Systems. In: Proceedings of the 17th International Conference on Engineering Design, Stanford (2009)

    Google Scholar 

  28. Gimpel, B., Herb, R., Herb, T.: Ideen finden, Produkte entwickeln mit TRIZ. Hanser Verlag, München (2000)

    Google Scholar 

  29. Greenyer, J.: Scenario-based design of mechatronic systems. Ph.D. thesis

    Google Scholar 

  30. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence Diagrams. Software and System Modeling 7(2), 237–252 (2007)

    Article  Google Scholar 

  31. International Electrotechnical Commission (IEC): Analysis Techniques for System Reliability - Procedure for Failure Mode and Effects Analysis (FMEA), IEC 60812 (2006)

    Google Scholar 

  32. International Electrotechnical Commission (IEC): Fault Tree Analysis (FTA), IEC 61025 (2006)

    Google Scholar 

  33. Kahl, S.M.: Rahmenwerk für einen selbstoptimierenden entwicklungsprozess fortschrittlicher mechatronischer systeme. Ph.D. thesis, Fakultät für Maschinenbau, Universität Paderborn, HNI-Verlagschriftenreihe, Band 308, Paderborn (2013)

    Google Scholar 

  34. Koller, R., Kastrup, N.: Prinziplösungen zur Konstruktion technischer Produkte. Springer, Heidelberg (1998)

    Book  Google Scholar 

  35. Langlotz, G.: Ein Beitrag zur Funktionsstrukturentwicklung innovativer Produkte. Ph.D. thesis, Institut für Rechneranwendung in Planung und Konstruktion, Universität Karlsruhe, Shaker Verlag, Band 2, Aachen (2000)

    Google Scholar 

  36. Langseth, H., Portinale, L.: Bayesian Networks in Reliability. In: Reliability Engineering & System Safety (2007)

    Google Scholar 

  37. Lee, J., Ni, D., Djurdjanovic, H., Qiu, H., Liao, H.: Intelligent Prognostic Tools and E-maintenance. Computers in Industry 57(6), 476–489 (2006)

    Article  Google Scholar 

  38. Lindemann, U., Maurer, M.: Individualisierte Produkte - Komplexität beherrschen in Entwicklung und Produktion. Springer, Heidelberg (2006)

    Book  Google Scholar 

  39. Blackenfelt, M.: On the Development of Modular Mechatronic Products. Royal Institute of Technology, KTH Stockholm (1999)

    Google Scholar 

  40. Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. MIT Press, Cambridge (1974)

    Google Scholar 

  41. Mitchell, R.K., Agle, B.R.: Towards a Theory of Stakeholder Identification and Salience - Defending the Principle of Who and What Really Counts. Journal = Academy of Management Review 22(4), 11–14 (1997)

    Google Scholar 

  42. Nordsiek, D., Gausemeier, J., Lanza, G., Peters, S.: Early Evaluation of Manufacturing Costs within an Integrative Design of Product and Production System. In: Proceedings of the APMS 2010, International Conference on Advances in Production Management Systems, Como (2010)

    Google Scholar 

  43. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design - A Systematic Approach, 3rd edn. Springer, Heidelberg (2007)

    Google Scholar 

  44. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell: A Desktop Quick Reference. O’Reilly (2005)

    Google Scholar 

  45. Pook, S.: Eine Methode zum Entwurf von Zielsystemen selbstoptimierender mechatronischer Systeme. Ph.D. thesis, Fakultät für Maschinenbau, Universität Paderborn, HNI-Verlagsschriftenreihe, Band 296, Paderborn (2011)

    Google Scholar 

  46. RailCab - Neue Bahntechnik Paderborn: The Project Web Site, http://railcab.de (accessed March 5, 2012)

  47. Roth, K.: Konstruieren mit Konstruktionskatalogen: 1. Band: Konstruktionslehre, 3rd edn. Springer, Heidelberg (2000)

    Book  Google Scholar 

  48. Sauer, T.: Ein Konzept zur Nutzung von Lösungsobjekten für die Produktentwicklung in Lern- und Anwendungssystemen. Ph.D. thesis, TU Darmstadt, VDI-Verlag, Düsseldorf (2006)

    Google Scholar 

  49. Scheffler, M.: Cost vs. Quality Trade-off for Gigh-density Packaging of Electronic Systems. Ph.D. thesis, Swiss Ferderal Institute for Technology, Eidgenössische Technische Hochschule, Zürich (2001)

    Google Scholar 

  50. Schmidt, A.: Wirkmuster zur Selbstoptimierung - Konstrukte für den Entwurf selbstoptimierender Systeme. Ph.D. thesis, Fakultät für Maschinenbau, Universität Paderborn, HNI-Verlagsschriftenreihe, Band 204, Paderborn (2006)

    Google Scholar 

  51. Sondermann-Wölke, C., Geisler, J., Sextro, W.: Increasing the Reliability of a Self-optimizing Railway Guidance System (2010)

    Google Scholar 

  52. Stahl, T., Voelter, M.: Model-driven Software Development: Technology, Engineering, Management. John Wiley & Sons, Hoboken (2006)

    Google Scholar 

  53. Steffen, D.: Ein Verfahren zur Produktstrukturierung für fortgeschrittene mechatronische Systeme. Ph.D. thesis, Fakultät für Maschinenbau, Universität Paderborn, HNI-Verlagsschriftenreihe, Band 207, Paderborn (2006)

    Google Scholar 

  54. Strube, G.: Wörterbuch der Kognitionswissenschaft. Klett-Cotta, Stuttgart (1996)

    Google Scholar 

  55. Thommen, J.P.: Managementorientierte Betriebswirtschaftslehre, 8th edn. Versus Verlag, Zürich (2008)

    Google Scholar 

  56. Tumer, I., Stone, R., Bell, D.: Requirements for a Failure Mode Taxonomy for Use in Conceptual Design. In: Proceedings of the International Conference on Engineering Design, Stockholm (2003)

    Google Scholar 

  57. Vaßholz, M., Gausemeier, J.: Cost-Benefit Analysis - Requirements for the Evaluation of Self-Optimizing Systems. In: Proceedings of the 1st Joint International Symposium on System-Integrated Intelligence, Hannover (2012)

    Google Scholar 

  58. Wilkinson, P., Kelly, T.: Functional Hazard Analysis for Highly Integrated Aerospace Systems. In: Proceedings of the Ground/Air Systems Seminar (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Anacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anacker, H. et al. (2014). Methods for the Domain-Spanning Conceptual Design. In: Gausemeier, J., Rammig, F., Schäfer, W. (eds) Design Methodology for Intelligent Technical Systems. Lecture Notes in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45435-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45435-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45434-9

  • Online ISBN: 978-3-642-45435-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics