Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Vectorized K-Means Algorithm for Intel Many Integrated Core Architecture

  • Conference paper
Advanced Parallel Processing Technologies (APPT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8299))

Included in the following conference series:

Abstract

The K-Means algorithms is one of the most popular and effective clustering algorithms for many practical applications. However, direct K-Means methods, taking objects as processing unit, is computationally expensive especially in Objects-Assignment phase on Single-Instruction Single-Data (SISD) processors, typically as CPUs. In this paper, we propose a vectorized K-Means algorithm for Intel Many Integrated Core (MIC) coprocessor, a newly released product from Intel for highly parallel workloads. This new algorithm is able to achieve fine-grained Single-Instruction Multiple-Data (SIMD) parallelism by taking each dimension of all objects as a long vector. This vectorized algorithm is suitable for any-dimensional objects, which is little taken into consideration in preceding works. We also parallelize the vectorized K-Means algorithm on MIC coprocessor to achieve coarse-grained thread-level parallelism. Finally, we implement and evaluate the vectorized method on the first generation of Intel MIC product. Measurements show that this algorithm based on MIC coprocessor gets desired speedup to sequential algorithm on CPU and demonstrate that MIC coprocessor owns highly parallel computational power as well as scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dayan, P.: Unsupervised Learning. The MIT Encyclopedia of the Cognitive Sciences

    Google Scholar 

  2. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  3. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2007)

    Article  Google Scholar 

  4. Lloyd, S.: Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–136 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA (2007)

    Google Scholar 

  6. Bahman, B., Moseley, B., Vattani, A.: Scalable K-Means++. Proceedings of the VLDB Endowment 5(7)

    Google Scholar 

  7. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming K-Means approximation. In: NIPS (2009)

    Google Scholar 

  8. Che, S., Boyer, M., Meng, J., Tarjan, D.: A performance study of general-purpose applications on graphics processors using CUDA. Journal of Parallel and Distributed Computing 68(10), 1370–1380 (2008)

    Article  Google Scholar 

  9. Bai, H.-T., He, L.-L., Ouyang, D.-T., Li, Z.-S., Li, H.: K-Means on commodity GPUs with CUDA. In: World Congress on Computer Science and Information Engineering (2009)

    Google Scholar 

  10. Farivar, R., Rebolledo, D., Chan, E., Campbell, R.: A parallel implementation of K-Means clustering on GPUs. In: Proceeding of International Conference on Parallel and Distributed Processing Techniques and Applications (2008)

    Google Scholar 

  11. Mahout, http://mahout.apache.org/

  12. Hadoop, http://hadoop.apache.org/

  13. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: OSDI, pp. 137–150 (2004)

    Google Scholar 

  14. Feldman, M.: TACC Steps Up to the MIC. HPCwire (April 21, 2011), http://www.hpcwire.com/hpcwire/2011-04-21/tacc_steps_up_to_the_mic.html

  15. Nvidia. Oak Ridge National Lab Turns to NVIDIA Tesla GPUs to Deploy World’s Leading Supercomputer. HPCwire (October 11, 2011), http://www.hpcwire.com/hpcwire/2011-10-11/oak_ridge_national_lab_turns_to_Nvidia_tesla_gpus_to_deploy_world_s_leading_supercomputer.html

  16. Intel. Introducing Intel Many Integrated Core Architecture. Press release (2011), http://www.intel.com/technology/architecture-silicon/mic/index.htm

  17. Seiler, L., et al.: Larrabee: A Many-Core x86 Architecture for visual Computing. ACM Trans. Graphics 27(3), 18:1–18:15 (2008)

    Article  MathSciNet  Google Scholar 

  18. Saule, E., Catalyurek, U.V.: An early evaluation of the scalability of graph algorithms on the Intel MIC Architecture. In: IEEE IPDPSW (2012), doi:10.1109

    Google Scholar 

  19. McFarlin, D.S., Arbatov, V., Franchetti, F., Puschel, M., Zurich, E.: Automatic SIMD vectorization of fast fourier transforms for the Larrabee and AVX Instruction sets. In: ACM ICS (2011)

    Google Scholar 

  20. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU Computing. Proceedings of the IEEE 96(5) (May 2008)

    Google Scholar 

  21. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Machine Learning 75(2), 245–248 (2009)

    Article  Google Scholar 

  22. Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J., Sadayappan, P.: Data Layout Transformation for Stencil Computations on Short-Vector SIMD Architectures. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 225–245. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. He, B.S., Govindaraju, N.K., Luo, Q., Smith, B.: Efficient Gather and Scatter operations on graphics processors. In: Proceeding of the 2007 ACM/IEEE Conference on Supercomputing, p. 46. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, F., Wu, Q., Tan, Y., Wei, L., Shao, L., Gao, L. (2013). A Vectorized K-Means Algorithm for Intel Many Integrated Core Architecture. In: Wu, C., Cohen, A. (eds) Advanced Parallel Processing Technologies. APPT 2013. Lecture Notes in Computer Science, vol 8299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45293-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45293-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45292-5

  • Online ISBN: 978-3-642-45293-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics