Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incidence Coloring Game and Arboricity of Graphs

  • Conference paper
Combinatorial Algorithms (IWOCA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8288))

Included in the following conference series:

Abstract

An incidence of a graph G is a pair (v,e) where v is a vertex of G and e an edge incident to v. Two incidences (v,e) and (w,f) are adjacent whenever v = w, or e = f, or vw = e or f. The incidence coloring game [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary coloring game where the two players, Alice and Bob, alternately color the incidences of a graph, using a given number of colors, in such a way that adjacent incidences get distinct colors. If the whole graph is colored then Alice wins the game otherwise Bob wins the game. The incidence game chromatic number i g (G) of a graph G is the minimum number of colors for which Alice has a winning strategy when playing the incidence coloring game on G.

Andres proved that \(i_g(G) \le 2\varDelta(G) + 4k - 2\) for every k-degenerate graph G. We show in this paper that \(i_g(G) \le \lfloor\frac{3\varDelta(G) - a(G)}{2}\rfloor + 8a(G) - 2\) for every graph G, where a(G) stands for the arboricity of G, thus improving the bound given by Andres since a(G) ≤ k for every k-degenerate graph G. Since there exists graphs with \(i_g(G) \ge \lceil\frac{3\varDelta(G)}{2}\rceil\), the multiplicative constant of our bound is best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andres, S.: The incidence game chromatic number. Discrete Appl. Math. 157, 1980–1987 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartnicki, T., Grytczuk, J., Kierstead, H.A., Zhu, X.: The map coloring game. Amer. Math. Monthly (November 2007)

    Google Scholar 

  3. Bodlaender, H.: On the complexity of some coloring games. Int. J. Found. Comput. Sci. 2, 133–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brualdi, R., Massey, J.: Incidence and strong edge colorings of graphs. Discrete Math. 122, 51–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charpentier, C., Sopena, E.: The incidence game chromatic number of forests (preprint, 2013)

    Google Scholar 

  6. Dinski, T., Zhu, X.: Game chromatic number of graphs. Discrete Math. 196, 109–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardner, M.: Mathematical game. Scientific American 23 (1981)

    Google Scholar 

  8. Hosseini Dolama, M., Sopena, E.: On the maximum average degree and the incidence chromatic number of a graph. Discrete Math. and Theoret. Comput. Sci. 7(1), 203–216 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Hosseini Dolama, M., Sopena, E., Zhu, X.: Incidence coloring of k-degenerated graphs. Discrete Math. 283, 121–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kierstead, H.: A simple competitive graph coloring algorithm. J. Combin. Theory Ser. B 78(1), 57–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kierstead, H., Trotter, W.: Planar graph coloring with an uncooperative partner. J. Graph Theory 18, 569–584 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, J.: The incidence game chromatic number of paths and subgraphs of wheels. Discrete Appl. Math. 159, 683–694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maydansky, M.: The incidence coloring conjecture for graphs of maximum degree three. Discrete Math. 292, 131–141 (2005)

    Article  MathSciNet  Google Scholar 

  14. Sopena, E.: http://www.labri.fr/perso/sopena/TheIncidenceColoringPage

  15. Wang, S., Chen, D., Pang, S.: The incidence coloring number of Halin graphs and outerplanar graphs. Discrete Math. 256, 397–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhu, X.: The game coloring number of planar graphs. J. Combin. Theory Ser. B 75(2), 245–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhu, X.: Refined activation strategy for the marking game. J. Combin. Theory Ser. B 98(1), 1–18 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charpentier, C., Sopena, É. (2013). Incidence Coloring Game and Arboricity of Graphs. In: Lecroq, T., Mouchard, L. (eds) Combinatorial Algorithms. IWOCA 2013. Lecture Notes in Computer Science, vol 8288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45278-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45278-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45277-2

  • Online ISBN: 978-3-642-45278-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics