Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8312))

Abstract

QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Barak, B.: Computational Complexity — A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3) (1979)

    Google Scholar 

  3. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1) (2012)

    Google Scholar 

  5. Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Benedetti, M.: sKizzo: a suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5(1-4) (2008)

    Google Scholar 

  8. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis, University of Paderborn (2010)

    Google Scholar 

  12. Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Buning, H.K., Letterman, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, New York (1999)

    Google Scholar 

  14. Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook of Satisfiability. IOS Press (2009)

    Google Scholar 

  15. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1) (1995)

    Google Scholar 

  16. Büning, H.K., Subramani, K., Zhao, X.: Boolean functions as models for quantified Boolean formulas. J. Autom. Reasoning 39(1) (2007)

    Google Scholar 

  17. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified Boolean formulae and its experimental evaluation. J. Autom. Reasoning 28(2) (2002)

    Google Scholar 

  18. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: STOC (1988)

    Google Scholar 

  19. Cheng, C.H., Shankar, N., Ruess, H., Bensalem, S.: EFSMT: A logical framework for cyber-physical systems (2013), http://arxiv.org/abs/1306.3456

  20. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Egly, U., Widl, M.: Solution extraction from long-distance resolution proofs (July 2013), http://fmv.jku.at/qbf2013/reportQBFWS13.pdf

  22. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. JAIR 26(1) (2006)

    Google Scholar 

  23. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Handbook of Satisfiability. IOS Press (2009)

    Google Scholar 

  24. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor for QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Gorogiannis, N.: Computing Minimal Changes of Models of Systems. Ph.D. thesis, University of Birmingham (2003)

    Google Scholar 

  26. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: IJCAI, pp. 546–553. IJCAI/AAAI (2011)

    Google Scholar 

  27. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)

    Google Scholar 

  28. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. J. Autom. Reasoning 49(4) (2012)

    Google Scholar 

  33. Jordan, C., Kaiser, Ł.: Experiments with reduction finding. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 192–207. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  34. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electr. Notes Theor. Comput. Sci. 174(3) (2007)

    Google Scholar 

  35. Jussila, T., Biere, A., Sinz, C., Kroning, D., Wintersteiger, C.M.: A first step towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223(1-2) (1999)

    Google Scholar 

  37. Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  38. Morgenstern, A., Gesell, M., Schneider, K.: Solving games using incremental induction. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 177–191. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  39. Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying QBFs: A comparison of state-of-the-art tools. AI Commun. 22(4) (2009)

    Google Scholar 

  40. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  41. Ostrowski, R., Grégoire, É., Mazure, B., Saïs, L.: Recovering and exploiting structural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 185–199. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  42. Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  43. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3) (2004)

    Google Scholar 

  44. QBF gallery (2013), http://www.kr.tuwien.ac.at/events/qbfgallery2013/

  45. Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local repairs for Boolean programs. In: FMCAD (2008)

    Google Scholar 

  46. Samulowitz, H., Bacchus, F.: Binary clause reasoning in QBF. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 353–367. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  47. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  48. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 10(2) (2009)

    Google Scholar 

  49. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  50. Stockmeyer, L.J.: The complexity of decision problems in automata theory and logic. Ph.D. thesis, Massachusetts Institute of Technology (1974)

    Google Scholar 

  51. Subbarayan, S., Pradhan, D.K.: NiVER: Non increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  52. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  53. Van Gelder, A.: Certificate extraction from variable-elimination QBF preprocessors (July 2013), http://fmv.jku.at/qbf2013/reportQBFWS13.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janota, M., Grigore, R., Marques-Silva, J. (2013). On QBF Proofs and Preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2013. Lecture Notes in Computer Science, vol 8312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45221-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45221-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45220-8

  • Online ISBN: 978-3-642-45221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics