Abstract
QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S., Barak, B.: Computational Complexity — A Modern Approach. Cambridge University Press (2009)
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3) (1979)
Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)
Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1) (2012)
Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)
Benedetti, M.: sKizzo: a suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg (2005)
Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5(1-4) (2008)
Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011)
Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010)
Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis, University of Paderborn (2010)
Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007)
Buning, H.K., Letterman, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, New York (1999)
Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. In: Handbook of Satisfiability. IOS Press (2009)
Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1) (1995)
Büning, H.K., Subramani, K., Zhao, X.: Boolean functions as models for quantified Boolean formulas. J. Autom. Reasoning 39(1) (2007)
Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified Boolean formulae and its experimental evaluation. J. Autom. Reasoning 28(2) (2002)
Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: STOC (1988)
Cheng, C.H., Shankar, N., Ruess, H., Bensalem, S.: EFSMT: A logical framework for cyber-physical systems (2013), http://arxiv.org/abs/1306.3456
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)
Egly, U., Widl, M.: Solution extraction from long-distance resolution proofs (July 2013), http://fmv.jku.at/qbf2013/reportQBFWS13.pdf
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. JAIR 26(1) (2006)
Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Handbook of Satisfiability. IOS Press (2009)
Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor for QBFs based on equivalence reasoning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 85–98. Springer, Heidelberg (2010)
Gorogiannis, N.: Computing Minimal Changes of Models of Systems. Ph.D. thesis, University of Birmingham (2003)
Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: IJCAI, pp. 546–553. IJCAI/AAAI (2011)
Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)
Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)
Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)
Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345. Springer, Heidelberg (2010)
Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. J. Autom. Reasoning 49(4) (2012)
Jordan, C., Kaiser, Ł.: Experiments with reduction finding. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 192–207. Springer, Heidelberg (2013)
Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electr. Notes Theor. Comput. Sci. 174(3) (2007)
Jussila, T., Biere, A., Sinz, C., Kroning, D., Wintersteiger, C.M.: A first step towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007)
Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor. Comput. Sci. 223(1-2) (1999)
Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)
Morgenstern, A., Gesell, M., Schneider, K.: Solving games using incremental induction. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 177–191. Springer, Heidelberg (2013)
Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying QBFs: A comparison of state-of-the-art tools. AI Commun. 22(4) (2009)
Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)
Ostrowski, R., Grégoire, É., Mazure, B., Saïs, L.: Recovering and exploiting structural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 185–199. Springer, Heidelberg (2002)
Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004)
Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3) (2004)
QBF gallery (2013), http://www.kr.tuwien.ac.at/events/qbfgallery2013/
Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local repairs for Boolean programs. In: FMCAD (2008)
Samulowitz, H., Bacchus, F.: Binary clause reasoning in QBF. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 353–367. Springer, Heidelberg (2006)
Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)
Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Log. 10(2) (2009)
Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer, Heidelberg (2007)
Stockmeyer, L.J.: The complexity of decision problems in automata theory and logic. Ph.D. thesis, Massachusetts Institute of Technology (1974)
Subbarayan, S., Pradhan, D.K.: NiVER: Non increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)
Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)
Van Gelder, A.: Certificate extraction from variable-elimination QBF preprocessors (July 2013), http://fmv.jku.at/qbf2013/reportQBFWS13.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Janota, M., Grigore, R., Marques-Silva, J. (2013). On QBF Proofs and Preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2013. Lecture Notes in Computer Science, vol 8312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45221-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-45221-5_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45220-8
Online ISBN: 978-3-642-45221-5
eBook Packages: Computer ScienceComputer Science (R0)