Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Bug Data

A Practitioner’s Guide

  • Chapter
  • First Online:
Recommendation Systems in Software Engineering
  • 3422 Accesses

Abstract

Although software systems control many aspects of our daily life world, no system is perfect. Many of our day-to-day experiences with computer programs are related to software bugs. Although software bugs are very unpopular, empirical software engineers and software repository analysts rely on bugs or at least on those bugs that get reported to issue management systems. So what makes data software repository analysts appreciate bug reports? Bug reports are development artifacts that relate to code quality and thus allow us to reason about code quality, and quality is key to reliability, end-users, success, and finally profit. This chapter serves as a hand-on tutorial on how to mine bug reports, relate them to source code, and use the knowledge of bug fix locations to model, estimate, or even predict source code quality. This chapter also discusses risks that should be addressed before one can achieve reliable recommendation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Replace < version > with the downloaded version number of Mozkito.

  2. 2.

    Please see the Mozkito documentation on how to create such a PersistenceUtil instance.

  3. 3.

    There exist more aggregation strategies. Please see the Mozkito manual for more details.

  4. 4.

    mozkito-issues-<version>-jar-with-dependencies.jar

  5. 5.

    mozkito-bugcount-< version >-jar-with-dependencies.jar

References

  1. Anbalagan, P., Vouk, M.: On predicting the time taken to correct bug reports in open source projects. In: Proceedings of the IEEE International Conference on Software Maintenance, pp. 523–526 (2009). doi:10.1109/ICSM.2009.5306337

    Google Scholar 

  2. Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., Guéhéneuc, Y.G.: Is it a bug or an enhancement?: a text-based approach to classify change requests. In: Proceedings of the IBM Centre for Advanced Studies Conference on Collaborative Research (2008). doi:10.1145/1463788.1463819

    Google Scholar 

  3. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 361–370 (2006). doi:10.1145/1134285.1134336

    Google Scholar 

  4. Aranda, J., Venolia, G.: The secret life of bugs: going past the errors and omissions in software repositories. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 298–308 (2009). doi:10.1109/ICSE.2009.5070530

    Google Scholar 

  5. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, vol. 1, pp. 95–104 (2010). doi:10.1145/1806799.1806817

    Google Scholar 

  6. Bachmann, A., Bernstein, A.: Software process data quality and characteristics: a historical view on open and closed source projects. In: Proceedings of the Joint ACM International Workshop on Principles of Software Evolution and ERCIM Workshop on Software Evolution, pp. 119–128 (2009). doi:10.1145/1595808.1595830

    Google Scholar 

  7. Bernstein, A., Bachmann, A.: When process data quality affects the number of bugs: correlations in software engineering datasets. In: Proceedings of the International Working Conference on Mining Software Repositories, pp. 62–71 (2010). doi:10.1109/MSR.2010.5463286

    Google Scholar 

  8. Bettenburg, N., Begel, A.: Deciphering the story of software development through frequent pattern mining. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 1197–1200 (2013). doi:10.1109/ICSE.2013.6606677

    Google Scholar 

  9. Bettenburg, N., Just, S., Schröter, A., Weiß, C., Premraj, R., Zimmermann, T.: Quality of bug reports in Eclipse. In: Proceedings of the Eclipse Technology eXchange, pp. 21–25 (2007). doi:10.1145/1328279.1328284

    Google Scholar 

  10. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.: What makes a good bug report? In: Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 308–318 (2008). doi:10.1145/1453101.1453146

    Google Scholar 

  11. Bettenburg, N., Premraj, R., Zimmermann, T.: Duplicate bug reports considered harmful … really? In: Proceedings of the IEEE International Conference on Software Maintenance, pp. 337–345 (2008). doi:10.1109/ICSM.2008.4658082

    Google Scholar 

  12. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., Devanbu, P.: Fair and balanced?: bias in bug-fix datasets. In: Proceedings of the European Software Engineering Conference/ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 121–130 (2009). doi:10.1145/1595696.1595716

    Google Scholar 

  13. Bird, C., Nagappan, N., Gall, H., Murphy, B., Devanbu, P.: Putting it all together: using socio-technical networks to predict failures. In: Proceedings of the International Symposium on Software Reliability Engineering, pp. 109–119 (2009). doi:10.1109/ISSRE.2009.17

    Google Scholar 

  14. Bird, C., Bachmann, A., Rahman, F., Bernstein, A.: LINKSTER: enabling efficient manual inspection and annotation of mined data. In: Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 369–370 (2010). doi:10.1145/1882291.1882352

    Google Scholar 

  15. Breu, S., Premraj, R., Sillito, J., Zimmermann, T.: Information needs in bug reports: improving cooperation between developers and users. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 301–310 (2010). doi:10.1145/1718918.1718973

    Google Scholar 

  16. Cartwright, M.H., Shepperd, M.J., Song, Q.: Dealing with missing software project data. In: Proceedings of the IEEE International Symposium on Software Metrics, pp. 154–165 (2003). doi:10.1109/METRIC.2003.1232464

    Google Scholar 

  17. Čubranić, D., Murphy, G.C., Singer, J., Booth, K.S.: Hipikat: a project memory for software development. IEEE Trans. Software Eng. 31(6), 446–465 (2005). doi:10.1109/TSE.2005.71

    Article  Google Scholar 

  18. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction approaches. In: Proceedings of the International Working Conference on Mining Software Repositories, pp. 31–41 (2010). doi:10.1109/MSR.2010.5463279

    Google Scholar 

  19. Davis, J., Goadrich, M.: The relationship between precision–recall and ROC curves. In: Proceedings of the International Conference on Machine Learning, pp. 233–240 (2006). doi:10.1145/1143844.1143874

    Google Scholar 

  20. Dhaliwal, T., Khomh, F., Zou, Y.: Classifying field crash reports for fixing bugs: a case study of Mozilla Firefox (2011). doi:10.1109/ICSM.2011.6080800

    MATH  Google Scholar 

  21. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from version control and bug tracking systems. In: Proceedings of the IEEE International Conference on Software Maintenance, pp. 23–32 (2003). doi:10.1109/ICSM.2003.1235403

    Google Scholar 

  22. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: Characterizing and predicting which bugs get fixed. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, vol. 1, pp. 495–504 (2010). doi:10.1145/1806799.1806871

    Google Scholar 

  23. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction performance in software engineering. IEEE Trans. Software Eng. 38(6), 1276–1304 (2012). doi:10.1109/TSE.2011.103

    Article  Google Scholar 

  24. Herzig, K.: Mining and untangling change genealogies. Ph.D. thesis, Universität des Saarlandes (2013)

    Google Scholar 

  25. Herzig, K., Zeller, A.: The impact of tangled code changes. In: Proceedings of the International Working Conference on Mining Software Repositories, pp. 121–130 (2013)

    Google Scholar 

  26. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 392–401 (2013). doi:10.1109/ICSE.2013.6606585

    Google Scholar 

  27. Hooimeijer, P., Weimer, W.: Modeling bug report quality. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 34–43 (2007). doi:10.1145/1321631.1321639

    Google Scholar 

  28. Jeffrey, D., Feng, M., Gupta, R.: BugFix: a learning-based tool to assist developers in fixing bugs. In: Proceedings of the IEEE International Conference on Program Comprehenension, pp. 70–79 (2009). doi:10.1109/ICPC.2009.5090029

    Google Scholar 

  29. Kawrykow, D.: Enabling precise interpretations of software change data. Master’s thesis, McGill University (2011)

    Google Scholar 

  30. Kawrykow, D., Robillard, M.P.: Non-essential changes in version histories. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 351–360 (2011). doi:10.1145/1985793.1985842

    Google Scholar 

  31. Kersten, M.: Focusing knowledge work with task context. Ph.D. thesis, University of British Columbia, Vancouver (2007)

    Google Scholar 

  32. Kim, S., Whitehead, E.J.: How long did it take to fix bugs? In: Proceedings of the International Workshop on Mining Software Repositories, pp. 173–174 (2006). doi:10.1145/1137983.1138027

    Google Scholar 

  33. Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 481–490 (2011). doi:10.1145/1985793.1985859

    Google Scholar 

  34. Kimmig, M., Monperrus, M., Mezini, M.: Querying source code with natural language. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 376–379 (2011). doi:10.1109/ASE.2011.6100076

    Google Scholar 

  35. Ko, A.J., Myers, B.A., Chau, D.H.: A linguistic analysis of how people describe software problems. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 127–134 (2006). doi:10.1109/VLHCC.2006.3

    Google Scholar 

  36. Kuhn, M.: caret: classification and regression training. Version 4.76, R package (2011). URL http://cran.r-project.org/web/packages/caret/caret.pdf. [retrieved 9 October 2013]

  37. Lamkanfi, A., Demeyer, S., Soetens, Q.D., Verdonck, T.: Comparing mining algorithms for predicting the severity of a reported bug. In: Proceedings of the European Conference on Software Maintenance and Reengineering, pp. 249–258 (2011). doi:10.1109/CSMR.2011.31

    Google Scholar 

  38. Liebchen, G.A., Shepperd, M.: Data sets and data quality in software engineering. In: Proceedings of the International Workshop on Predictor Models in Software Engineering, pp. 39–44 (2008). doi:10.1145/1370788.1370799

    Google Scholar 

  39. Marks, L., Zou, Y., Hassan, A.E.: Studying the fix-time for bugs in large open source projects. In: Proceedings of the International Conference on Predictor Models in Software Engineering, pp. 11:1–11:8 (2011). doi:10.1145/2020390.2020401

    Google Scholar 

  40. Matter, D., Kuhn, A., Nierstrasz, O.: Assigning bug reports using a vocabulary-based expertise model of developers. In: Proceedings of the International Working Conference on Mining Software Repositories, pp. 131–140 (2009). doi:10.1109/MSR.2009.5069491

    Google Scholar 

  41. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4), 308–320 (1976). doi:10.1109/TSE.1976.233837

    Article  MATH  MathSciNet  Google Scholar 

  42. Mende, T., Koschke, R.: Effort-aware defect prediction models. In: Proceedings of the European Conference on Software Maintenance and Reengineering, pp. 107–116 (2010). doi:10.1109/CSMR.2010.18

    Google Scholar 

  43. Menzies, T.: Data mining: a tutorial. In: Robillard, M., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in Software Engineering. Springer, Berlin (2014)

    Google Scholar 

  44. Menzies, T., Marcus, A.: Automated severity assessment of software defect reports. In: Proceedings of the IEEE International Conference on Software Maintenance, pp. 346–355 (2008). doi:10.1109/ICSM.2008.4658083

    Google Scholar 

  45. Mockus, A.: Missing data in software engineering. In: Shull, F., Singer, J., Sjøberg, D. (eds.) Guide to Advanced Empirical Software Engineering, pp. 185–200. Springer, London (2008). doi:10.1007/978-1-84800-044-5_7

    Chapter  Google Scholar 

  46. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software development: Apache and Mozilla. ACM Trans. Software Eng. Methodol. 11(3), 309–346 (2002). doi:10.1145/567793.567795

    Article  Google Scholar 

  47. Mockus, A., Nagappan, N., Dinh-Trong, T.T.: Test coverage and post-verification defects: a multiple case study. In: Proceedings of the International Symposium on Empirical Software Engineering and Measurement, pp. 291–301 (2009). doi:10.1109/ESEM.2009.5315981

    Google Scholar 

  48. Myrtveit, I., Stensrud, E., Olsson, U.H.: Analyzing data sets with missing data: an empirical evaluation of imputation methods and likelihood-based methods. IEEE Trans. Software Eng. 27(11), 999–1013 (2001). doi:10.1109/32.965340

    Article  Google Scholar 

  49. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 284–292 (2005). doi:10.1145/1062455.1062514

    Google Scholar 

  50. Nagappan, N., Ball, T.: Evidence-based failure prediction. In: Oram, A., Wilson, G. (eds.) Making Software: What Really works,and Why we believe it, pp. 415–434. O’Reilly Media, Sebastopol (2010)

    Google Scholar 

  51. Nagappan, N., Murphy, B., Basili, V.: The influence of organizational structure on software quality: an empirical case study. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 521–530 (2008). doi:10.1145/1368088.1368160

    Google Scholar 

  52. Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., Murphy, B.: Change bursts as defect predictors. In: Proceedings of the International Symposium on Software Reliability Engineering, pp. 309–318 (2010). doi:10.1109/ISSRE.2010.25

    Google Scholar 

  53. Nagwani, N.K., Verma, S.: Predicting expert developers for newly reported bugs using frequent terms similarities of bug attributes. In: Proceedings of the International Conference on ICT and Knowledge Engineering, pp. 113–117 (2012). doi:10.1109/ICTKE.2012.6152388

    Google Scholar 

  54. Nguyen, T.H.D., Adams, B., Hassan, A.E.: A case study of bias in bug-fix datasets. In: Proceedings of the Working Conference on Reverse Engineering, pp. 259–268 (2010). doi:10.1109/WCRE.2010.37

    Google Scholar 

  55. Nguyen, A.T., Nguyen, T.T., Al-Kofahi, J., Nguyen, H.V., Nguyen, T.N.: A topic-based approach for narrowing the search space of buggy files from a bug report. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 263–272 (2011). doi:10.1109/ASE.2011.6100062

    Google Scholar 

  56. Prifti, T., Banerjee, S., Cukic, B.: Detecting bug duplicate reports through local references. In: Proceedings of the International Conference on Predictor Models in Software Engineering, pp. 8:1–8:9 (2011). doi:10.1145/2020390.2020398

    Google Scholar 

  57. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2010)

    Google Scholar 

  58. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using natural language processing. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 499–510 (2007). doi:10.1109/ICSE.2007.32

    Google Scholar 

  59. Samuelson, W., Zeckhauser, R.: Status quo bias in decision making. J. Risk Uncertain. 1, 7–59 (1988). doi:10.1007/BF00055564

    Article  Google Scholar 

  60. Sarma, A., Noroozi, Z., van der Hoek, A.: Palantír: raising awareness among configuration management workspaces. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 444–454 (2003). doi:10.1109/ICSE.2003.1201222

    Google Scholar 

  61. Strike, K., El Emam, K., Madhavji, N.: Software cost estimation with incomplete data. IEEE Trans. Software Eng. 27(10), 890–908 (2001). doi:10.1109/32.935855

    Article  Google Scholar 

  62. Sun, C., Lo, D., Khoo, S.C., Jiang, J.: Towards more accurate retrieval of duplicate bug reports. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 253–262 (2011). doi:10.1109/ASE.2011.6100061

    Google Scholar 

  63. Thomas, S.W.: Mining software repositories using topic models. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 1138–1139 (2011). doi:10.1145/1985793.1986020

    Google Scholar 

  64. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate bug reports using natural language and execution information. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 461–470 (2008). doi:10.1145/1368088.1368151

    Google Scholar 

  65. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  66. Wu, R., Zhang, H., Kim, S., Cheung, S.C.: ReLink: recovering links between bugs and changes. In: Proceedings of the European Software Engineering Conference/ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 15–25 (2011). doi:10.1145/2025113.2025120

    Google Scholar 

  67. Yu, L., Tsai, W.T., Zhao, W., Wu, F.: Predicting defect priority based on neural networks. In: Proceedings of the International Conference on Advanced Data Mining and Applications. Lecture Notes in Computer Science, vol. 6441, pp. 356–367 (2010). doi:10.1007/978-3-642-17313-4_35

    Google Scholar 

  68. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency graphs. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 531–540 (2008). doi:10.1145/1368088.1368161

    Google Scholar 

  69. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for Eclipse. In: Proceedings of the International Workshop on Predictor Models in Software Engineering, pp. 9:1–9:7 (2007). doi 10.1109/PROMISE.2007.10

    Google Scholar 

Download references

Acknowledgments

We thank Sascha Just and many anonymous reviewers for their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Herzig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzig, K., Zeller, A. (2014). Mining Bug Data. In: Robillard, M., Maalej, W., Walker, R., Zimmermann, T. (eds) Recommendation Systems in Software Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45135-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45135-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45134-8

  • Online ISBN: 978-3-642-45135-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics