Nothing Special   »   [go: up one dir, main page]

Skip to main content

Snippet Generation by Identifying Attribute Associated Information

  • Conference paper
Information Retrieval Technology (AIRS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8281))

Included in the following conference series:

  • 1509 Accesses

Abstract

In this paper, we focus on the task of using a web search engine to find the entity that best fits the user’s demand by comparing multiple entities of the same type. We call this task attribute-oriented entity search. As the primary task, we tackle the snippet generation problem. When users access a web search engine to locate entities, they input two kinds of queries; namely, type query and attribute query. Type query represents entity type. Attribute query represents specific entity attributes. We propose a method that generates snippets containing information associated with both type and attribute queries. Specifically, our model is an extension of the conventional query-biased summarization method, which consists of two probabilistic models. Our method introduces a novel probabilistic model, the ambiguous relevance model, to reflect the information about input attribute queries, which are written in a variety of words, in the generated snippet. The results of experiments show that our method can generate better snippets in terms of information about attribute queries than conventional methods while matching the performance of conventional methods with respect to information about type queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, A., Mittal, O.: Query-relevant summarization using FAQs. In: Proc. ACL 2000, pp. 294–301 (2000)

    Google Scholar 

  2. Bessho, K., Furuse, O., Kataoka, R., Oku, M.: Kanshinji Antenna: A japanese-language concept search system. International Journal of Human-Computer Interaction 23(1&2), 25–49 (2007)

    Article  Google Scholar 

  3. Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)

    Article  Google Scholar 

  4. Dalton, J., Blanco, R., Mika, P.: Coreference aware web object retrieval. In: Proc. CIKM 2011, pp. 211–220 (2011)

    Google Scholar 

  5. Jain, A., Pennacchiotti, M.: Open entity extraction from web search query logs. In: Proc. COLING 2010, pp. 510–518 (2010)

    Google Scholar 

  6. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects: Actions for entity-centric search. In: Proc. WWW 2012, pp. 589–598 (2012)

    Google Scholar 

  7. Metzler, D., Kanungo, T.: Machine learned sentence selection strategies for query-biased summarization. In: Proc. SIGIR 2008 Workshop Learning to Rank for Information Retrieval (2008)

    Google Scholar 

  8. Paşca, M.: Organizing and searching the world wide web of facts – step two: harnessing the wisdom of the crowds. In: Proc. WWW 2007, pp. 101–110 (2007)

    Google Scholar 

  9. Paşca, M.: Weakly-supervised discovery of named entities using web search queries. In: Proc. CIKM 2007, New York, NY, USA, pp. 683–690 (2007)

    Google Scholar 

  10. Pantel, P., Lin, D.: Discovering word senses from text. In: Proc. KDD 2002, pp. 613–619 (2002)

    Google Scholar 

  11. Pantel, P., Lin, T., Gamon, M.: Mining entity types from query logs via user intent modeling. In: Proc. ACL 2012, pp. 563–571 (2012)

    Google Scholar 

  12. Pound, J., Hudek, K., Ilyas, F., Weddell, G.: Interpreting keyword queries over web knowledge bases. In: Proc. CIKM 2012, pp. 305–314 (2012)

    Google Scholar 

  13. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proc. WWW 2010, pp. 771–780 (2010)

    Google Scholar 

  14. Rose, E., Levinson, D.: Understanding user goals in web search. In: Proc. WWW 2004, pp. 13–19 (2004)

    Google Scholar 

  15. Sekine, S., Suzuki, H.: Acquiring ontological knowledge from query logs. In: Proc. WWW 2007, pp. 1223–1224 (2007)

    Google Scholar 

  16. Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval. In: Proc. SIGIR 1998, pp. 2–10 (1998)

    Google Scholar 

  17. Wang, C., Jing, F., Zhang, L., Zhang, H.: Learning query-biased web page summarization. In: Proc. CIKM 2007, pp. 555–562 (2007)

    Google Scholar 

  18. Yin, X., Shah, S.: Building taxonomy of web search intents for name entity queries. In: Proc. WWW 2010, pp. 1001–1010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanaka, Y., Suhara, Y., Hiroshima, N., Toda, H., Susaki, S. (2013). Snippet Generation by Identifying Attribute Associated Information. In: Banchs, R.E., Silvestri, F., Liu, TY., Zhang, M., Gao, S., Lang, J. (eds) Information Retrieval Technology. AIRS 2013. Lecture Notes in Computer Science, vol 8281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45068-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45068-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45067-9

  • Online ISBN: 978-3-642-45068-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics