Abstract
In this paper, we focus on the task of using a web search engine to find the entity that best fits the user’s demand by comparing multiple entities of the same type. We call this task attribute-oriented entity search. As the primary task, we tackle the snippet generation problem. When users access a web search engine to locate entities, they input two kinds of queries; namely, type query and attribute query. Type query represents entity type. Attribute query represents specific entity attributes. We propose a method that generates snippets containing information associated with both type and attribute queries. Specifically, our model is an extension of the conventional query-biased summarization method, which consists of two probabilistic models. Our method introduces a novel probabilistic model, the ambiguous relevance model, to reflect the information about input attribute queries, which are written in a variety of words, in the generated snippet. The results of experiments show that our method can generate better snippets in terms of information about attribute queries than conventional methods while matching the performance of conventional methods with respect to information about type queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, A., Mittal, O.: Query-relevant summarization using FAQs. In: Proc. ACL 2000, pp. 294–301 (2000)
Bessho, K., Furuse, O., Kataoka, R., Oku, M.: Kanshinji Antenna: A japanese-language concept search system. International Journal of Human-Computer Interaction 23(1&2), 25–49 (2007)
Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)
Dalton, J., Blanco, R., Mika, P.: Coreference aware web object retrieval. In: Proc. CIKM 2011, pp. 211–220 (2011)
Jain, A., Pennacchiotti, M.: Open entity extraction from web search query logs. In: Proc. COLING 2010, pp. 510–518 (2010)
Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects: Actions for entity-centric search. In: Proc. WWW 2012, pp. 589–598 (2012)
Metzler, D., Kanungo, T.: Machine learned sentence selection strategies for query-biased summarization. In: Proc. SIGIR 2008 Workshop Learning to Rank for Information Retrieval (2008)
Paşca, M.: Organizing and searching the world wide web of facts – step two: harnessing the wisdom of the crowds. In: Proc. WWW 2007, pp. 101–110 (2007)
Paşca, M.: Weakly-supervised discovery of named entities using web search queries. In: Proc. CIKM 2007, New York, NY, USA, pp. 683–690 (2007)
Pantel, P., Lin, D.: Discovering word senses from text. In: Proc. KDD 2002, pp. 613–619 (2002)
Pantel, P., Lin, T., Gamon, M.: Mining entity types from query logs via user intent modeling. In: Proc. ACL 2012, pp. 563–571 (2012)
Pound, J., Hudek, K., Ilyas, F., Weddell, G.: Interpreting keyword queries over web knowledge bases. In: Proc. CIKM 2012, pp. 305–314 (2012)
Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proc. WWW 2010, pp. 771–780 (2010)
Rose, E., Levinson, D.: Understanding user goals in web search. In: Proc. WWW 2004, pp. 13–19 (2004)
Sekine, S., Suzuki, H.: Acquiring ontological knowledge from query logs. In: Proc. WWW 2007, pp. 1223–1224 (2007)
Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval. In: Proc. SIGIR 1998, pp. 2–10 (1998)
Wang, C., Jing, F., Zhang, L., Zhang, H.: Learning query-biased web page summarization. In: Proc. CIKM 2007, pp. 555–562 (2007)
Yin, X., Shah, S.: Building taxonomy of web search intents for name entity queries. In: Proc. WWW 2010, pp. 1001–1010 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tanaka, Y., Suhara, Y., Hiroshima, N., Toda, H., Susaki, S. (2013). Snippet Generation by Identifying Attribute Associated Information. In: Banchs, R.E., Silvestri, F., Liu, TY., Zhang, M., Gao, S., Lang, J. (eds) Information Retrieval Technology. AIRS 2013. Lecture Notes in Computer Science, vol 8281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45068-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-45068-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45067-9
Online ISBN: 978-3-642-45068-6
eBook Packages: Computer ScienceComputer Science (R0)