Nothing Special   »   [go: up one dir, main page]

Skip to main content

Emotional Multiagent Reinforcement Learning in Social Dilemmas

  • Conference paper
PRIMA 2013: Principles and Practice of Multi-Agent Systems (PRIMA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8291))

Abstract

Social dilemmas have attracted extensive interest in multiagent system research in order to study the emergence of cooperative behaviors among selfish agents. Without extra mechanisms or assumptions, directly applying multiagent reinforcement learning in social dilemmas will end up with convergence to the Nash equilibrium of mutual defection among the agents. This paper investigates the importance of emotions in modifying agent learning behaviors in order to achieve cooperation in social dilemmas. Two fundamental variables, individual wellbeing and social fairness, are considered in the appraisal of emotions that are used as intrinsic rewards for learning. Experimental results reveal that different structural relationships between the two appraisal variables can lead to distinct agent behaviors, and under certain circumstances, cooperation can be obtained among the agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofmann, L., Chakraborty, N., Sycara, K.: The evolution of cooperation in self-interested agent societies: a critical study. In: The 10th International Conference on Autonomous Agents and Multiagent Systems, pp. 685–692 (2011)

    Google Scholar 

  2. Salazar, N., Rodriguez-Aguilar, J., Arcos, J., Peleteiro, A., Burguillo-Rial, J.: Emerging cooperation on complex networks. In: The 10th International Conference on Autonomous Agents and Multiagent Systems, pp. 669–676 (2011)

    Google Scholar 

  3. Nowak, M.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  4. Perc, M., Szolnoki, A.: Coevolutionary games–a mini review. BioSystems 99(2), 109–125 (2010)

    Article  Google Scholar 

  5. Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  6. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. C. Appl. Re. 38(2), 156–172 (2008)

    Article  Google Scholar 

  7. Conlisk, J.: Why bounded rationality? J. Econ. Lit. 34(2), 669–700 (1996)

    Google Scholar 

  8. Stimpson, J., Goodrich, M., Walters, L.: Satisficing and learning cooperation in the prisoner’s dilemma. In: International Joint Conference on Artificial Intelligence, pp. 535–544. AAAI Press, California (2001)

    Google Scholar 

  9. Rumbell, T., Barnden, J., Denham, S., Wennekers, T.: Emotions in autonomous agents: comparative analysis of mechanisms and functions. J. Auton. Agents Multi-AG 25(1), 1–45 (2012)

    Article  Google Scholar 

  10. Ahn, H., Picard, R.: Affective cognitive learning and decision making: The role of emotions. In: Proceedings of the 18th European Meeting on Cybernetics and Systems Research, pp. 1–6. North-Holland, Amsterdam (2006)

    Google Scholar 

  11. Salichs, M., Malfaz, M.: A new approach to modeling emotions and their use on a decision-making system for artificial agents. IEEE Trans. Affec. Comput. 3(1), 56–68 (2012)

    Article  Google Scholar 

  12. Sequeira, P., Melo, F., Paiva, A.: Emotion-based intrinsic motivation for reinforcement learning agents. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 326–336. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Bazzan, A., Bordini, R.: A framework for the simulation of agents with emotions. In: Proceedings of the 5th International Conference on Autonomous Agents, pp. 292–299. ACM, New York (2001)

    Chapter  Google Scholar 

  14. Szolnoki, A., Xie, N., Wang, C., Perc, M.: Imitating emotions instead of strategies in spatial games elevates social welfare. Europhys. Lett. 96(3), 38002 (2011)

    Article  Google Scholar 

  15. Bazzan, A., Peleteiro, A., Burguillo, J.: Learning to cooperate in the iterated prisoner’s dilemma by means of social attachments. J. Braz. Comp. Soc. 17(3), 163–174 (2011)

    Article  MathSciNet  Google Scholar 

  16. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MATH  Google Scholar 

  17. Singh, S., Lewis, R., Barto, A.: Where do rewards come from. In: Proceedings of the Annual Conference of the Cognitive Science Society, pp. 2601–2606. Cognitive Science Society, Inc., Austin (2009)

    Google Scholar 

  18. Singh, S., Lewis, R., Barto, A., Sorg, J.: Intrinsically motivated reinforcement learning: An evolutionary perspective. IEEE Trans. Auton. Mental Develop. 2(2), 70–82 (2010)

    Article  Google Scholar 

  19. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. Blueprint for Affective Computing: A Source Book. Oxford University Press, Oxford (2010)

    Google Scholar 

  20. Ellsworth, P., Scherer, K.: Appraisal processes in emotion. Oxford University Press, New York (2003)

    Google Scholar 

  21. de Jong, S., Tuyls, K.: Human-inspired computational fairness. J. Auton. Agents Multi-AG 22(1), 103–126 (2011)

    Article  Google Scholar 

  22. Smith, C.A., Lazarus, R.S.: Appraisal components, core relational themes, and the emotions. Cognition and Emotion 7(3-4), 233–269 (1993)

    Article  Google Scholar 

  23. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  24. Abdallah, S., Lesser, V.: Learning the task allocation game. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 850–857 (2006)

    Google Scholar 

  25. Sandholm, T., Crites, R.: Multiagent reinforcement learning in the iterated prisoner’s dilemma. Biosystems 37(1-2), 147–166 (1996)

    Article  Google Scholar 

  26. Vrancx, P., Tuyls, K., Westra, R.: Switching dynamics of multi-agent learning. In: the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 307–313. ACM Press, New York (2008)

    Google Scholar 

  27. Tanabe, S., Masuda, N.: Evolution of cooperation facilitated by reinforcement learning with adaptive aspiration levels. J. Theor. Biol. 293, 151–160 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, C., Zhang, M., Ren, F. (2013). Emotional Multiagent Reinforcement Learning in Social Dilemmas. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds) PRIMA 2013: Principles and Practice of Multi-Agent Systems. PRIMA 2013. Lecture Notes in Computer Science(), vol 8291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44927-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44927-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44926-0

  • Online ISBN: 978-3-642-44927-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics