Abstract
Microblogs, although extremely peculiar pieces of data, constitute a very rich source of information, which has been widely exploited recently, thanks to the liberal access Twitter offers through its API. Nevertheless, computing relevant answers to general queries is still a very challenging task. We propose a new engine, the Twittering Machine, which evaluates SQL like queries on streams of tweets, using ranking techniques computed at query time. Our algorithm is real time, it produces streams of results which are refined progressively, adaptive, the queries continuously adapt to new trends, invasive, it interacts with Twitter by suggesting relevant users to follow, and query results to publish as tweets. Moreover it works in a decentralized environment, directly in the browser on the client side, making it easy to use, and server independent.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.-H., Liu, B.: Predicting flu trends using twitter data. In: IEEE Conference on Computer Communications Workshops, INFOCOM (2011)
Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., Lin, J.: Earlybird: Real-time search at twitter. In: IEEE International Conference on Data Engineering, ICDE (2012)
Chen, C., Li, F., Ooi, B.C., Wu, S.: Ti: an efficient indexing mechanism for real-time search on tweets. In: ACM SIGMOD International Conference on Management of Data, Athens (2011)
Esmaili, K.S., Sanamrad, T., Fischer, P.M., Tatbul, N.: Changing flights in mid-air: a model for safely modifying continuous queries. In: ACM SIGMOD International Conference on Management of Data, Athens (2011)
Gurevich, Y., Leinders, D., Van den Bussche, J.: A theory of stream queries. In: 11th International Symposium on Database Programming Languages, DBPL, Vienna (2007)
Ginsberg, J., Mohebbi, M., Patel, R., Brammer, L., Smolinski, M., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009)
Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)
Kong, S., Feng, L.: A Tweet-Centric Approach for Topic-Specific Author Ranking in Micro-Blog. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part I. LNCS, vol. 7120, pp. 138–151. Springer, Heidelberg (2011)
Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Processing and visualizing the data in tweets. SIGMOD Record 40(4), 21–27 (2011)
Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Tweets as data: demonstration of tweeql and twitinfo. In: ACM SIGMOD International Conference on Management of Data (2011)
Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and resource management in a data stream management system. In: CIDR (2003)
Rowe, M., Stankovic, M., Dadzie, A.-S. (eds.): Proceedings, 2nd Workshop on Making Sense of Microposts (#MSM 2012): Big things come in small packages, Lyon, France, April 16 (2012)
Tao, K., Abel, F., Hauff, C., Houben, G.-J.: What makes a tweet relevant for a topic? In Rowe et al. [RSD 12], pp. 49–56
Thompson, B.: The early bird gets the buzz: detecting anomalies and emerging trends in information networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM 2012 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Frénot, S., Grumbach, S. (2012). An in-Browser Microblog Ranking Engine. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds) Advances in Conceptual Modeling. ER 2012. Lecture Notes in Computer Science, vol 7518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-33999-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33998-1
Online ISBN: 978-3-642-33999-8
eBook Packages: Computer ScienceComputer Science (R0)