Nothing Special   »   [go: up one dir, main page]

Skip to main content

An in-Browser Microblog Ranking Engine

  • Conference paper
Advances in Conceptual Modeling (ER 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7518))

Included in the following conference series:

Abstract

Microblogs, although extremely peculiar pieces of data, constitute a very rich source of information, which has been widely exploited recently, thanks to the liberal access Twitter offers through its API. Nevertheless, computing relevant answers to general queries is still a very challenging task. We propose a new engine, the Twittering Machine, which evaluates SQL like queries on streams of tweets, using ranking techniques computed at query time. Our algorithm is real time, it produces streams of results which are refined progressively, adaptive, the queries continuously adapt to new trends, invasive, it interacts with Twitter by suggesting relevant users to follow, and query results to publish as tweets. Moreover it works in a decentralized environment, directly in the browser on the client side, making it easy to use, and server independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.-H., Liu, B.: Predicting flu trends using twitter data. In: IEEE Conference on Computer Communications Workshops, INFOCOM (2011)

    Google Scholar 

  2. Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., Lin, J.: Earlybird: Real-time search at twitter. In: IEEE International Conference on Data Engineering, ICDE (2012)

    Google Scholar 

  3. Chen, C., Li, F., Ooi, B.C., Wu, S.: Ti: an efficient indexing mechanism for real-time search on tweets. In: ACM SIGMOD International Conference on Management of Data, Athens (2011)

    Google Scholar 

  4. Esmaili, K.S., Sanamrad, T., Fischer, P.M., Tatbul, N.: Changing flights in mid-air: a model for safely modifying continuous queries. In: ACM SIGMOD International Conference on Management of Data, Athens (2011)

    Google Scholar 

  5. Gurevich, Y., Leinders, D., Van den Bussche, J.: A theory of stream queries. In: 11th International Symposium on Database Programming Languages, DBPL, Vienna (2007)

    Google Scholar 

  6. Ginsberg, J., Mohebbi, M., Patel, R., Brammer, L., Smolinski, M., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009)

    Article  Google Scholar 

  7. Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)

    Article  Google Scholar 

  8. Kong, S., Feng, L.: A Tweet-Centric Approach for Topic-Specific Author Ranking in Micro-Blog. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part I. LNCS, vol. 7120, pp. 138–151. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Processing and visualizing the data in tweets. SIGMOD Record 40(4), 21–27 (2011)

    Article  Google Scholar 

  10. Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Tweets as data: demonstration of tweeql and twitinfo. In: ACM SIGMOD International Conference on Management of Data (2011)

    Google Scholar 

  11. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and resource management in a data stream management system. In: CIDR (2003)

    Google Scholar 

  12. Rowe, M., Stankovic, M., Dadzie, A.-S. (eds.): Proceedings, 2nd Workshop on Making Sense of Microposts (#MSM 2012): Big things come in small packages, Lyon, France, April 16 (2012)

    Google Scholar 

  13. Tao, K., Abel, F., Hauff, C., Houben, G.-J.: What makes a tweet relevant for a topic? In Rowe et al. [RSD 12], pp. 49–56

    Google Scholar 

  14. Thompson, B.: The early bird gets the buzz: detecting anomalies and emerging trends in information networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM 2012 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frénot, S., Grumbach, S. (2012). An in-Browser Microblog Ranking Engine. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds) Advances in Conceptual Modeling. ER 2012. Lecture Notes in Computer Science, vol 7518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33999-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33998-1

  • Online ISBN: 978-3-642-33999-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics