Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Partition of Collaborative Multiagent Based on Coordination Trees

  • Conference paper
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 194))

Abstract

In team Markov games research, it is difficult for an individual agent to calculate the reward of collaborative agents dynamically. We present a coordination tree structure whose nodes are agent subsets or an agent. Two kinds of weights of a tree are defined which describe the cost of an agent collaborating with an agent subset. We can calculate a collaborative agent subset and its minimal cost for collaboration using these coordination trees. Some experiments of a Markov game have been done by using this novel algorithm. The results of the experiments prove that this method outperforms related multi-agent reinforcement-learning methods based on alterable collaborative teams.

This work was supported by the national natural science funds in China with No.61070143 and the science project of Shaanxi with No. 2011K09-28.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boeling, M.: Multiagent Learning in the Presence of Agents with Limitations. CMU 4, 1–172 (2003)

    Google Scholar 

  2. Parker, L.E.: Distributed algorithms for multi-robot observation of multiple moving targets. Autonomous Robots 12(3), 231–255 (2002)

    Article  MATH  Google Scholar 

  3. Pynadath, D.V., Tambe, M.: The communicative multiagent team decision problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Research 16, 389–423 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Guestrin, C.: Planning under uncertainty in complex structured environments. PhD thesis, Computer Science Department, Stanford University (August 2003)

    Google Scholar 

  5. Groen, F.C.A., Spaan, M.T.J., Kok, J.R., Pavlin, G.: Real World Multi-agent Systems: Information Sharing, Coordination and Planning. In: ten Cate, B.D., Zeevat, H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp. 154–165. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Kok, J.R., Spaan, M.T.J., Vlassis, N.: Non-communicative multi-robot coordination in dynamic environments. Robotics and Autonomous Systems 50(2-3), 99–114 (2005)

    Article  Google Scholar 

  7. Tesauro, G.: Extending Q-learning to general adaptive multi-agent systems. In: Advances in Neural Information Processing Systems, vol. 16 (2004)

    Google Scholar 

  8. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: Advances in Neural Information Processing Systems (NIPS) 14. MIT Press (2002a)

    Google Scholar 

  9. Kok, J.R., Vlassis, N.: Collaborative Multiagent Reinforcement Learning by Payoff Propagation. Journal of Machine Learning Research, 1789–1828 (2006)

    Google Scholar 

  10. Christopher Gifford, M., Agah, A.: Sharing in Teams of Heterogeneous,Collaborative Learning Agents. International Journal of Intelligent Systems 24(2), 173–200 (2009)

    Article  MATH  Google Scholar 

  11. Zhang, C., Lesser, V.R., Abdallah, S.: Self-organization for coordinating decentralized reinforcement learning. In: Proceedings of AAMAS, pp. 739–746 (2010)

    Google Scholar 

  12. Hoen, P.J.’., de Jong, E.D.: Evolutionary Multi-agent Systems. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 872–881. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Kapetanakis, S., Kudenko, D.: Reinforcement learning of coordination in heterogeneous cooperative multi-agent systems. In: Proceedings of the Third Autonomous Agents and Multi-Agent Systems Conference (2004)

    Google Scholar 

  14. Panait, L., Luke, S.: Cooperative Multi-Agent Learning: The State of the Art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

    Article  Google Scholar 

  15. Li, J., Pan, Q., Hong, B.: A new multi-agent reinforcement learning approach. In: 2010 IEEE International Conference on Information and Automation (ICIA), vol. 6, pp. 1667–1671 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Min, F., Groen, F.C.A., Hao, L. (2013). Dynamic Partition of Collaborative Multiagent Based on Coordination Trees. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33932-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33932-5_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33931-8

  • Online ISBN: 978-3-642-33932-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics