Abstract
The goal of single image deblurring is to recover both a latent clear image and an underlying blur kernel from one input blurred image. Recent works focus on exploiting natural image priors or additional image observations for deblurring, but pay less attention to the influence of image structures on estimating blur kernels. What is the useful image structure and how can one select good regions for deblurring? We formulate the problem of learning good regions for deblurring within the Conditional Random Field framework. To better compare blur kernels, we develop an effective similarity metric for labeling training samples. The learned model is able to predict good regions from an input blurred image for deblurring without user guidance. Qualitative and quantitative evaluations demonstrate that good regions can be selected by the proposed algorithms for effective image deblurring.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR, pp. 1964–1971 (2009)
Fergus, R., Singh, B., Hertzmann, A., Rowels, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM SIGGRAPH, pp. 787–794 (2006)
Joshi, N., Szeliski, R., Kriegman, D.J.: PSF estimation using sharp edge prediction. In: CVPR (2008)
Cho, T.S., Joshi, N., Zitnick, C.L., Kang, S.B., Szeliski, R., Freeman, W.T.: A content-aware image prior. In: CVPR, pp. 169–176 (2010)
Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)
Levin, A.: Blind motion deblurring using image statistics. In: NIPS, pp. 841–848 (2006)
Jia, J.: Single image motion deblurring using transparency. In: CVPR (2007)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In: ACM SIGGRAPH, pp. 73:1–73:10 (2008)
Cai, J., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: CVPR, pp. 104–111 (2009)
Ben-Ezra, M., Nayar, S.: Motion deblurring using hybrid imaging. In: CVPR, pp. 657–664 (2003)
Yuan, L., Sun, J., Quan, L., Shum, H.: Image deblurring with blurred/noisy image pairs. In: ACM SIGGRAPH (2007)
Kumar, S., Hebert, M.: Discriminative random field. IJCV 68, 179–201 (2006)
Cho, S., Lee, S.: Fast motion deblurring. In: SIGGRAPH Asia (2009)
Gupta, A., Joshi, N., Zitnick, L., Cohen, M., Curless, B.: Single Image Deblurring Using Motion Density Functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)
Szummer, M., Kohli, P., Hoiem, D.: Learning CRFs Using Graph Cuts. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 582–595. Springer, Heidelberg (2008)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222–1239 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, Z., Yang, MH. (2012). Good Regions to Deblur. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33715-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-33715-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33714-7
Online ISBN: 978-3-642-33715-4
eBook Packages: Computer ScienceComputer Science (R0)