Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Handling of Large Signalling-Regulatory Networks by Focusing on Their Core Control

  • Conference paper
Computational Methods in Systems Biology (CMSB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Included in the following conference series:

Abstract

Considering the logical (Boolean or multi-valued) asynchronous framework, we delineate a reduction strategy for large signalling and regulatory networks. Consequently, focusing on the core network that drives the whole dynamics, we can check which attractors are reachable from given initial conditions, under fixed or varying environmental conditions.

More specifically, the dynamics of logical models are represented by (asynchronous) state transition graphs that grow exponentially with the number of model components. We introduce adequate reduction methods (preserving reachability of the attractors) and proceed with model-checking approaches.

Input nodes (that generally represent receptors) and output nodes (that constitute readouts of network behaviours) are each specifically processed to reduce the state space. The proposed approach is made available within GINsim, our software dedicated to the definition and analysis of logical models. The new GINsim functionalities consist in a proper reduction of output components, as well as the corresponding symbolic encoding of logical models for the NuSMV model checker. This encoding also includes a reduction over input components (transferring their values from states to transitions labels). Finally, we demonstrate the interest of the proposed methods through their application to a published large scale model of the signalling pathway involved in T cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bilke, S., Sjunnesson, F.: Stability of the Kauffman model. Phys. Rev. E 65(016129) (2001)

    Google Scholar 

  2. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 244–263 (1986)

    Article  MATH  Google Scholar 

  4. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput Biol. 1(9), 67–103 (2002)

    Article  Google Scholar 

  5. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006)

    Article  Google Scholar 

  6. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and time with nusmv. In: Veloso, M.M. (ed.) Proc. 20th Intl. Joint Conf. on Artificial Intelligence (IJCAI 2007), pp. 1384–1389. Morgan Kaufmann Publishers Inc. (2007)

    Google Scholar 

  7. Müller-Olm, M., Schmidt, D., Steffen, B.: Model-Checking: A Tutorial Introduction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Monteiro, P.T., Chaouiya, C.: Efficient Verification for Logical Models of Regulatory Networks. In: Rocha, M.P., Luscombe, N., Fdez-Riverola, F., Rodríguez, J.M.C. (eds.) 6th International Conference on PACBB. AISC, vol. 154, pp. 259–267. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134–139 (2009)

    Article  Google Scholar 

  10. Naldi, A., Carneiro, J., Chaouiya, C., Thieffry, D.: Diversity and plasticity of th cell types predicted from regulatory network modelling. PLoS Comput. Biol. 6(9) (2010)

    Google Scholar 

  11. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction of logical regulatory graphs. Theor. Comput. Sci. 412, 2207–2218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Naldi, A., Thieffry, D., Chaouiya, C.: Decision Diagrams for the Representation and Analysis of Logical Models of Genetic Networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Pecheur, C., Raimondi, F.: Symbolic Model Checking of Logics with Actions. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 113–128. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Remy, E., Ruet, P.: From minimal signed circuits to the dynamics of boolean regulatory networks. Bioinformatics 24(16), i220–i226 (2008)

    Article  Google Scholar 

  15. Saadatpour, A., Albert, I., Albert, R.: Attractor analysis of asynchronous boolean models of signal transduction networks. J. Theor. Biol. 266(4), 641–656 (2010)

    Article  MathSciNet  Google Scholar 

  16. Saez-Rodriguez, J., Simeoni, L., Lindquist, J., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.-U., Weismantel, R., Gilles, E., Klamt, S., Schraven, B.: A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), e163 (2007)

    Google Scholar 

  17. Saez-Rodriguez, J., Simeoni, L., Lindquist, J.A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.-U., Weismantel, R., Gilles, E.D., Klamt, S., Schraven, B.: A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), e163 (2007)

    Google Scholar 

  18. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 8(suppl. 6), S9 (2007)

    Article  Google Scholar 

  19. Thieffry, D.: Dynamical roles of biological regulatory circuits. Brief. Bioinform. 8(4), 220–225 (2007)

    Article  Google Scholar 

  20. Thomas, R.: Regulatory networks seen as asynchronous automata: A logical description. J. Theor. Biol. 153, 1–23 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naldi, A., Monteiro, P.T., Chaouiya, C. (2012). Efficient Handling of Large Signalling-Regulatory Networks by Focusing on Their Core Control. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics