Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tracking Metastatic Brain Tumors in Longitudinal Scans via Joint Image Registration and Labeling

  • Conference paper
Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data (STIA 2012)

Abstract

The treatment of metastatic brain tumors with stereotactic radiosurgery requires that the clinician first locate the tumors and measure their volumes. Thoroughly searching a patient scan for brain tumors and delineating the lesions can be a long and difficult task when done manually and is also prone to human error. In this paper, we present an automated method for detecting changes in brain tumor lesions over longitudinal scans to aide the clinician’s task of determining tumor volumes. Our approach jointly registers the current image with a previous scan while estimating changes in intensity correspondences due to tumor growth or regression. We combine the label map with correspondence changes with tumor segmentations from a previous scan to estimate the metastases in the new image. Alignment and tumor tracking results show promise on 28 registrations using real patient data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maher, E.A., Mietz, J., Arteaga, C.L., DePinho, R.A., Mohla, S.: Brain metastasis: Opportunities in basic and translational research. Cancer Research 69, 6015–6020 (2009)

    Article  Google Scholar 

  2. Mehta, M.P., Tsao, M.N., Whelan, T.J., Morri, D.E., Hayman, J.A., Flickinger, J.C., Mills, M., Rogers, C.L., Souhami, L.: The american society for therapeutic radiology and oncology (astro) evidence-based review of the role of radiosurgery for brain metastases. International Journal of Radiation Oncology Biology Physics 63, 37–46 (2005)

    Article  Google Scholar 

  3. Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmentation of evolving processes in 3d medical images: Application to multiple sclerosis. Medical Image Analysis 6, 163–179 (2002)

    Article  Google Scholar 

  4. Rouchdy, Y., Bloch, I.: A chance-constrained programming level set method for longitudinal segmentation of lung tumors in ct. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 3407–3410 (2011)

    Google Scholar 

  5. Xu, J., Greenspan, H., Napel, S., Rubin, D.L.: Automated temporal tracking and segmentation of lymphoma on serial ct examinations. Medical Physics 38(11), 5879–5886 (2011)

    Article  Google Scholar 

  6. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans. Med. Imaging 27, 629–640 (2008)

    Article  Google Scholar 

  7. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Medical Image Analysis 8, 275–283 (2004)

    Article  Google Scholar 

  8. Zacharaki, E.I., Hogea, C.S., Shen, D., Biros, G., Davatzikos, C.: Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. Neuroimage 46(3), 762–774 (2009)

    Article  Google Scholar 

  9. Chitphakdithai, N., Duncan, J.S.: Non-rigid Registration with Missing Correspondences in Preoperative and Postresection Brain Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 367–374. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Celeux, G., Govaert, G.: A classification em algorithm for clustering and two stochastic versions. Comput. Statist. Data Anal. 14, 315–332 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meng, X.-L., Rubin, D.B.: Maximum likelihood estimation via the ecm algorithm: A general framework. Biometrika 80(2), 267–278 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast mr images. IEEE Trans. Med. Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  13. Celeux, G., Forbes, F., Peyrard, N.: Em procedures using mean field-like approximations for markov model-based image segmentation. Pattern Recognition 36, 131–144 (2003)

    Article  MATH  Google Scholar 

  14. Papademetris, X., Jackowski, M., Rajeevan, N., Okuda, H., Constable, R., Staib, L.: BioImage Suite: An integrated medical image analysis suite. Section of Bioimaging Sciences, Dept. of Diagnostic Radiology, Yale School of Medicine, http://www.bioimagesuite.org

  15. Jackowski, A.P., Papademetris, X., Klaiman, C., Win, L., Pober, B., Schultz, R.T.: A non-linear intensity-based brain morphometric analysis of williams syndrome. Human Brain Mapping (2004)

    Google Scholar 

  16. Meadows, G.G. (ed.): Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol. 15. Springer (2005)

    Google Scholar 

  17. Weltens, C., Menten, J., Feron, M., Bellon, E., Demaerel, P., Maes, F., van den Bogaert, W., van der Schueren, E.: Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging. Radiotherapy and Oncology 60, 49–59 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chitphakdithai, N., Chiang, V.L., Duncan, J.S. (2012). Tracking Metastatic Brain Tumors in Longitudinal Scans via Joint Image Registration and Labeling. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M. (eds) Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data. STIA 2012. Lecture Notes in Computer Science, vol 7570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33555-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33555-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33554-9

  • Online ISBN: 978-3-642-33555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics