Nothing Special   »   [go: up one dir, main page]

Skip to main content

Self-stabilizing Algorithm for Maximal Graph Partitioning into Triangles

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7596))

Included in the following conference series:

Abstract

The graph partitioning problem consists of dividing a graph into parts, patterns or partitions which satisfy some specifications. Graph partitioning problems are known to be NP-complete. In this paper, we focus on the particular pattern of triangles and present the first Self-stabilizing algorithm for Maximal Partitioning of arbitrary graphs into Triangles (MPT). Then, we give the correctness and convergence proofs of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Azemi, F.M., Karaata, M.H.: Brief Announcement: A Stabilizing Algorithm for Finding Two Edge-Disjoint Paths in Arbitrary Graphs. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 433–434. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Andreev, K., Räcke, H.: Balanced graph partitioning. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2004, pp. 120–124 (2004)

    Google Scholar 

  3. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-Stabilizing Local Mutual Exclusion and Daemon Refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster algorithm in mobile ad hoc networks. In: ISPAN, pp. 436–441 (2005)

    Google Scholar 

  5. Belkouch, F., Bui, M., Chen, L., Datta, A.K.: Self-stabilizing deterministic network decomposition. J. Parallel Distrib. Comput. 62(4), 696–714 (2002)

    Article  MATH  Google Scholar 

  6. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-Free Super-Stabilizing Spanning Tree Construction. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: A Self-stabilizing K-Clustering Algorithm Using an Arbitrary Metric. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 602–614. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  9. Dolev, S.: Self-stabilization. MIT Press (2000)

    Google Scholar 

  10. Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. CoRR, abs/1110.0334 (2011)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  12. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Anonymous Daemon Conversion in Self-stabilizing Algorithms by Randomization in Constant Space. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 182–190. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: A robust distributed generalized matching protocol that stabilizes in linear time. In: ICDCS Workshops, pp. 461–465 (2003)

    Google Scholar 

  14. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: IPDPS, p. 162 (2003)

    Google Scholar 

  15. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assumption. In: Proceedings of the 27th International Conference on Distributed Computing Systems, ICDCS 2007, Washington, DC, USA, p. 46 (2007)

    Google Scholar 

  16. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput. (4), 406–415 (2010)

    Article  Google Scholar 

  17. Hadid, R., Karaata, M.H.: An adaptive stabilizing algorithm for finding all disjoint paths in anonymous mesh networks. Computer Communications 32(5), 858–866 (2009)

    Article  Google Scholar 

  18. Hadid, R., Karaata, M.H.: Stabilizing maximum matching in bipartite networks. Computing 84(1-2), 121–138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karaata, M.H.: An optimal self-stabilizing strarvation-free alternator. J. Comput. Syst. Sci. 71(4), 480–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time o(m). Inf. Process. Lett. 80(5), 221–223 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ishii, H., Kakugawa, H.: A self-stabilizing algorithm for finding cliques in distributed systems. In: IEEE Symposium on Reliable Distributed Systems, vol. 0, p. 390 (2002)

    Google Scholar 

  23. Karaata, M.H., Hadid, R.: Brief Announcement: A Stabilizing Algorithm for Finding Two Disjoint Paths in Arbitrary Networks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 789–790. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. Theor. Comput. Sci. 410(14), 1336–1345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pothen, A.: Graph partitioning algorithms with applications to scientific computing. Technical report, Norfolk, VA, USA (1997)

    Google Scholar 

  26. Serrour, B., Arenas, A., Gomez, S.: Detecting communities of triangles in complex networks using spectral optimization. Computer Communications 34(5), 629–634 (2011)

    Article  Google Scholar 

  27. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6), 271–272 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neggazi, B., Haddad, M., Kheddouci, H. (2012). Self-stabilizing Algorithm for Maximal Graph Partitioning into Triangles. In: Richa, A.W., Scheideler, C. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2012. Lecture Notes in Computer Science, vol 7596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33536-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33536-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33535-8

  • Online ISBN: 978-3-642-33536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics