Nothing Special   »   [go: up one dir, main page]

Skip to main content

Video Quality Assessment Combining Structural Distortion and Human Visual System

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7530))

  • 3524 Accesses

Abstract

This paper presents an improved structural similarity index (SSIM) for video quality assessment based on human visual system (HVS). To integrate visual characteristics to our SSIM, different weighted values are determined by those visual characteristics including contrast sensitivity, multi-channel structure, visual masking and so on. This method has the properties of simple and efficiency as the same of the SSIM method. And it is more suitable for human visual system due to fusing HVS. The experimental results show that the method can reflect people’s subjective feelings in a better way and is better than other traditional methods in fitting M2 (Correlation coefficient of Non-linear regression), M3 (Spearman rank), M4 (Outlier Ratio) of VQEG Phase I MOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ITU-T. Objective perceptual assessment of video quality: Full reference television [EB/OL]. Switezerland: ITU-T Telecommunication Standardization Bureau (TSB) (2004), http://vqeg.its.bldrdoc.gov

  2. Wang, Z., Sheikh, H.R., Bovik, A.C.: Objective video quality assessment. In: The Handbook of Video Databases: Design and Applications, pp. 1041–1078. CRC Press (2003)

    Google Scholar 

  3. Wandell, B.A.: Foundations of vision, pp. 1–10. Sinauer Press, England (1995)

    Google Scholar 

  4. Mannos, J.L., Sakrison, D.J.: The effect of a visual fidelity criterion on the encoding of images. IEEE Transactions on Inform. Theory 20(2), 525–536 (1974)

    Article  MATH  Google Scholar 

  5. Beegan, A.P., Iyer, L.R., Bell, A.E., et al.: Design and evaluation of perceptual masks for wavelet imge compression. Proceedings of 2002 IEEE 10(13-16), 88–93 (2002)

    Google Scholar 

  6. Wei, C.K., Chen, L.Z.: An Image Quality Measure Scheme in the Perceptual Field via Masking. Journal of Image and Graphics 9, 690–696 (2004)

    Google Scholar 

  7. Come, S., Macq, B.: Human visual quality criterion. In: SPIE Visual Commuication and Image Processing, San Jose, USA, vol. 1360, pp. 2–7 (1990)

    Google Scholar 

  8. Ding, X.X., Ding, R.H., Li, J.X.: A Criterion of Image Quality Assessment Based on Property of HVS. Journal of Image and Graphics 9, 190–194 (2004)

    Google Scholar 

  9. Wang, Z., Lu, L.G., Bovik, A.C.: Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication 19(2), 121–132 (2004)

    Article  Google Scholar 

  10. LIVE Image Quality Assessment Database Release2 [EB/OL], http://live.ece.utexas.edu/research/quality (February 19, 2007)

  11. Li, J.L., Chen, G., Chi, Z.R., et al.: Image coding quality assessment using fuzzy integrals with a three-component image model. IEEE Transactions on Fuzzy Systems 12(1), 99–106 (2004)

    Article  Google Scholar 

  12. Lu, Z.K., Lin, W.S., Yang, X.K., Ong, E.P., Yao, S.S.: Modeling Visual Attention And Motion Effect for Visual Quqlity Evaluation. In: International Symposium on Intelligent Multimedia, Video and Speech Processing (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tu, W., Xie, Z., Gan, L. (2012). Video Quality Assessment Combining Structural Distortion and Human Visual System. In: Lei, J., Wang, F.L., Deng, H., Miao, D. (eds) Artificial Intelligence and Computational Intelligence. AICI 2012. Lecture Notes in Computer Science(), vol 7530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33478-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33478-8_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33477-1

  • Online ISBN: 978-3-642-33478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics