Nothing Special   »   [go: up one dir, main page]

Skip to main content

Function Projective Synchronization and Parameters Identification of Different Hyperchaotic Systems Based on Adaptive Control

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7530))

  • 3522 Accesses

Abstract

In this paper a novel three dimensions chaotic system with uncertain parameters and lorenz hyperchaotic system are as examples, the function projective synchronization and parameters identification of different hyperchaotic systems are researched. First, based on the Lyapunov theory of stability and adaptive control method, the adaptive nonlinear controller and adaptive identifying rule to uncertain parameter are designed logically. And by the controller and identifying rule, the function projective synchronization of different systems between three dimensions response system with uncertain parameter and drive system is realized. Second, the feasibility of the controller and identifying rule to uncertain parameter designed in this paper is analyzed theoretically, and the function projective synchronization and parameters identification are proved strictly theoretically. Finally, the theoretical results are verified by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, G.R., Yu, X.L., Chen, S.G.: Chaotic control, synchronization and utilizing. National Defence Industry Press, Beijing (2001) (in Chinese)

    Google Scholar 

  2. Feng, C.W., Cai, L., Kang, Q., Zhang, L.S.: A novel three dimension autonomous chaotic system. Acta Phys. Sin. 60(3), 030503–030507 (2011) (in Chinese)

    Google Scholar 

  3. Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Physical Review Letters 64(8), 821–830 (1990)

    Article  MathSciNet  Google Scholar 

  4. Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Transactions on Circuits and Systems 38(4), 453–456 (1991)

    Article  Google Scholar 

  5. Dong, J., Zhang, G.J., Yao, H., et al.: The control of complete synchronization and anti-phase synchronization for hyperchaotic systems of different structures. Journal of Air Force Engineering University 13(5), 90–94 (2012)

    Google Scholar 

  6. Min, F.H., Wang, Z.Q.: General chaotic synchronization of identical and different novel hyperchaotic system. Journal of Electronics & Information Technology 30(12), 3031–3034 (2008) (in Chinese)

    Article  Google Scholar 

  7. Zhang, G., Zhang, W.: Pulse synchronization of complex network. Journal of Dynamics and Control 7(1), 001–004 (2009)

    Google Scholar 

  8. Lu, J., Zhang, R., Xu, Z.Y.: Phase synchronization between two adjacent nodes in amplitude coupled dynamical networks. Acta Phys. Sin. 59(9), 5949–5953 (2010) (in Chinese)

    Google Scholar 

  9. Cai, N., Jing, Y.W., Zhang, S.Y.: Adaptive synchronization and anti-synchronization of two different chaotic systems. Acta Phys.Sin. 58(2), 0802–0813 (2009) (in Chinese)

    MathSciNet  MATH  Google Scholar 

  10. Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042–3045 (1999)

    Article  Google Scholar 

  11. Li, Z.G., Xu, D.: Chaos. Solitons and Fractals 22, 477 (2004)

    Article  MATH  Google Scholar 

  12. Chee, C.Y., Xu, D.: Chaos. Solitons and Fractals 23, 1063 (2005)

    MATH  Google Scholar 

  13. Kadir, A., Wang, X.Y., Zhao, Y.Z.: Projective synchronization for unified hyperchaotic systems. Acta Phys. Sin. 60(4), 040506 (2011) (in Chinese)

    Google Scholar 

  14. Cai, G.L., Tan, Z.M., Zhou, W.H., Tu, W.T.: Dynamical analysis of a new chaotic system and its chaotic control. Acta Phys. Sin. 56(11), 6230–6237 (2010) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, J., Zhang, Gj., Yao, H., Wang, Xb., Wang, J. (2012). Function Projective Synchronization and Parameters Identification of Different Hyperchaotic Systems Based on Adaptive Control. In: Lei, J., Wang, F.L., Deng, H., Miao, D. (eds) Artificial Intelligence and Computational Intelligence. AICI 2012. Lecture Notes in Computer Science(), vol 7530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33478-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33478-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33477-1

  • Online ISBN: 978-3-642-33478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics