Nothing Special   »   [go: up one dir, main page]

Skip to main content

Studies on the Covering Rough Set and Its Matrix Description

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7530))

  • 3511 Accesses

Abstract

This paper mainly studies on the covering rough set based on the close friend element. Firstly, the upper and lower approximations of the covering rough set based on the close friend element are defined, while the properties are discussed. Secondly, we define the binary relation is induced by a covering called the close friend relation and its properties are studied. Finally, we give the matrix description of the covering rough set based on the close friend element, and prove that the upper and lower approximations obtained from the matrix are same to from the definition of covering rough set based on the close friend element, which give a new way to describe the covering rough set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11(5), 314–356 (1982)

    Article  MathSciNet  Google Scholar 

  2. Zhang, W.X., Wu, W.Z., Liang, J.Y., et al.: Rough Set Theory and Approaches. Science Press (2001)

    Google Scholar 

  3. Wang, G.Y.: Rough Set Theory and Knowledge Acquisition. Xi’an Jiaotong University Press (2001)

    Google Scholar 

  4. Pawlak, Z., Skowrongs, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pawlak, Z., Skowrons, A.: Rough sets: Some extensions. Information Sciences 177(1), 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wong, S.K.M., Ziarko, W.: On optimal decision rules in decision tables. Bulletin of Polish Academy of Sciences 32(11/12), 693–696 (1985)

    MathSciNet  Google Scholar 

  7. Skowrons, A., Rauszer, C.: The discernibility matrices and functions in information system. In: Slowingski, R. (ed.) Intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers (1992)

    Google Scholar 

  8. Banerjee, M., Pal, S.K.: Roughness of fuzzy set. Information Sciences 93, 235–246 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 291–317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nanda, S., Majumdar, S.: Fuzzy rough sets. Fuzzy Sets and Systems 45, 157–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zakowski, W.: Approximation in the space(U,∏). Demonstration Mathematica 16, 761–769 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough set. Information Sciences 152, 217–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152, 217–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhu, W., Wang, F.Y.: On Three Types of Covering Rough Sets. IEEE Transactions on Knowledge and Data Engineering 19(8), 1131–1144 (2007)

    Article  Google Scholar 

  15. Liu, G.L.: Fuzzy approximation space on the rough fuzzy set. Fuzzy Sets Systems and Mathematics 16, 75–78 (2002)

    Google Scholar 

  16. Lei, X.W.: Matrix method of rough set theory. Computer Engineering and Applications 42(17), 73–75 (2006)

    Google Scholar 

  17. Yang, Y.: Rough set definition of the matrix. Computer Engineering and Applications 43(14), 1–6 (2007)

    Google Scholar 

  18. Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Ma, Y., Wang, L., Zhang, J. (2012). Studies on the Covering Rough Set and Its Matrix Description. In: Lei, J., Wang, F.L., Deng, H., Miao, D. (eds) Artificial Intelligence and Computational Intelligence. AICI 2012. Lecture Notes in Computer Science(), vol 7530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33478-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33478-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33477-1

  • Online ISBN: 978-3-642-33478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics