Nothing Special   »   [go: up one dir, main page]

Skip to main content

Images Classifications Based on Color-Texture Feature

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7530))

  • 3541 Accesses

Abstract

This paper puts forwards a method of using MGabor filter-banks to extract Texture-Color features from digital images, and then to construct a group of support vector machines (SVM) classifiers to automatically and accurately classify color digital images. Successful experiments are conducted on the Simplicity and Brodatz image set and our own Ancient shards image sets. The experiments results show the proposed method can integrate the texture features and color information to further improve distinguishing ability of each category images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, J., Chen, X.-Y., Xu, R.-C.: Shape and texture-based image classification using wavelet. Journal of Computer Applications 27(2), 373–375 (2007)

    Google Scholar 

  2. Chen, Y., Wang, R.-S.: A Method for Texture Classification by Integrating Gabor Filters and ICA. Acta Electronica Sinica 35(2), 299–303 (2006)

    Google Scholar 

  3. Xie, S.-P., Hu, M.-L.: Parse Texture Representation and Classification. Application Research of Computers 24(3), 306–308 (2007)

    MathSciNet  Google Scholar 

  4. Shang, Y., Lian, Q.-S.: Rotation invariant texture classification algorithm based on Log-Polar and DT-CWT. Computer Engineering and Applications 43(11), 48–50 (2007)

    Google Scholar 

  5. Wei, N., Geng, G., Zhou, M.: Content-based Image Retrieval Using Gabor Filters. Computer Engineering 31(8), 10–11 (2005)

    Google Scholar 

  6. Sastry, C.S., Ravindranath, M., Pujari, A.K., Deekshatulu, B.L.: A modified Gabor function for content based image retrieval. Pattern Recognition Letters 28, 293–300 (2007)

    Article  Google Scholar 

  7. Shi, F., Wang, X., Yu, L.: 30 neural networks Case analyses Using Matlab. Beihang University Press, Beijing (2010)

    Google Scholar 

  8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Publishing House of Electronics Industry, Beijing (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, K., Qi, L., Geng, G. (2012). Images Classifications Based on Color-Texture Feature. In: Lei, J., Wang, F.L., Deng, H., Miao, D. (eds) Artificial Intelligence and Computational Intelligence. AICI 2012. Lecture Notes in Computer Science(), vol 7530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33478-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33478-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33477-1

  • Online ISBN: 978-3-642-33478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics