Nothing Special   »   [go: up one dir, main page]

Skip to main content

KACTL: Knowware Based Automated Construction of a Treelike Library from Web Documents

  • Conference paper
Web Information Systems and Mining (WISM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7529))

Included in the following conference series:

  • 2735 Accesses

Abstract

This paper proposed a knowware based supervised machine learning technique for domain specific regression and classification of Web documents. It is simple because it is only based on word counting techniques without natural language understanding and complicated statistic techniques. Starting from constructing a domain sub-division tree and assigning a training set of documents to its nodes, the algorithm produces a labeled classification tree with a characteristic vector for each node. This tree is used to classify any number of documents in that particular domain. A tool for developing Web portal is also provided to build a Web station for displaying the final treelike library of documents.

Partially supported by 973 Program 2009CB320701,NSFC 61073023 and Tsinghua-Tengxun Lab Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zamir, O., Etzioni, O.: Grouper: A Dynamic Clustering Interface to Web Search Results. In: Proceedings of the Eighth International World Wide Web Conference (WWW8), Toronto, Canada (May 1999)

    Google Scholar 

  2. Zamir, O., Etzioni, O.: Web Document Clustering: A Feasibility Demonstration. In: Proceedings of the 19th International ACM SIGIR Conference on Research and Development of Information Retrieval (SIGIR 1998), pp. 46–54 (1998)

    Google Scholar 

  3. Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., Ma, J.: Learning to cluster web search results. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2004), pp. 210–217. ACM, New York (2004)

    Google Scholar 

  4. Osiński, S., Stefanowski, J., Weiss, D.: Lingo: Search Results Clustering Algorithm Based on Singular Value Decomposition. In: Advances in Soft Computing, Intelligent Information Processing and Web Mining, Proceedings of the International IIS: IIPWM 2004 Conference, Zakopane, Poland, pp. 359–368 (2004)

    Google Scholar 

  5. Osiński, S., Weiss, D.: Conceptual Clustering Using Lingo Algorithm: Evaluation on Open Directory Project Data. In: Advances in Soft Computing, Intelligent Information Processing and Web Mining, Proceedings of the International IIS: IIPWM 2004 Conference, Zakopane, Poland, pp. 369–378 (2004)

    Google Scholar 

  6. Stefanowski, J., Weiss, D.: Carrot2 and Language Properties in Web Search Results Clustering. In: Menasalvas, E., Segovia, J., Szczepaniak, P.S. (eds.) AWIC 2003. LNCS (LNAI), vol. 2663, pp. 240–249. Springer, Heidelberg (2003)

    Google Scholar 

  7. Osiński, S., Weiss, D.: Carrot2: Design of a Flexible and Efficient Web Information Retrieval Framework. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 439–444. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Carpineto, C., Osiński, S., Romano, G., Weiss, D.: A survey of Web clustering engines. ACM Computing Surveys (CSUR) 41(3), Article No. 17 (July 2009) ISSN:0360-0300

    Google Scholar 

  9. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE, Trans. on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  10. Cheng, D., Kannan, R., Wang, G.: A Divide-and-Merge Methodology for Clustering. In: Proc. of the ACM Symposium on Principles of Database Systems (2005)

    Google Scholar 

  11. Kannan, R., Vetta, A.: On clusterings: good, bad and spectral. Journal of the ACM (JACM) 51(3), 497–515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frey, B.J., Dueck, D.: University of Toronto. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Givoni, I.E., Chung, C., Frey, B.J.: Uncertainty in Artificial Intelligence (UAI) (July 2011)

    Google Scholar 

  14. Ghosh, S., Ungureunu, A., Sudderth, E., Blei, D.: Spatial distance dependent Chinese restaurant processes for image segmentation. In: Neural Information Processing Systems (2011)

    Google Scholar 

  15. Lu, R.: From hardware to software to knowware: IT’s third liberation? IEEE Intelligent Systems, 82–85 (March/April 2005)

    Google Scholar 

  16. Lu, R.: Knowware, the Third Star after Hardware and Software. Polimetrica Publishing Co., Italy (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, R., Huang, Y., Sun, K., Chen, Z., Chen, Y., Zhang, S. (2012). KACTL: Knowware Based Automated Construction of a Treelike Library from Web Documents. In: Wang, F.L., Lei, J., Gong, Z., Luo, X. (eds) Web Information Systems and Mining. WISM 2012. Lecture Notes in Computer Science, vol 7529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33469-6_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33469-6_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33468-9

  • Online ISBN: 978-3-642-33469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics