Abstract
Accurate real-time registration of intra-operative ultrasound (US) to computed tomography (CT) remains a challenging problem. In orthopedic applications, a recent promising approach proposed the use of Gaussian mixture modeling for bone surface registration. Though relatively successful, the method relied on naïve and error prone subsampling of the surfaces registered to reduce computational cost and also heavily relied on heuristically-set parameters for bone surface generation. In this paper, we present an improved approach employing a novel point simplification method that redistributes surface points to better represent the surface achieving near real-time registration with higher accuracy and robustness. We also present a framework for automating the parameter selection in the bone surface extraction step. For validation, we present extensive quantitative tests on phantom and clinical data obtained by scanning patients with pelvic ring fractures in the operating room. We show an 89% average improvement in target registration error over the recent GMM registration based method.
Chapter PDF
Similar content being viewed by others
Keywords
References
Penney, G.P., Edwards, P.J., King, A.P., Blackall, J.M., Batchelor, P.G., Hawkes, D.J.: A Stochastic Iterative Closest Point Algorithm (stochastICP). In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 762–769. Springer, Heidelberg (2001)
Moghari, M.H., Abolmaesumi, P.: Point-Based Rigid-Body Registration Using an Unscented Kalman Filter. IEEE Transactions on Medical Imaging 26(12), 1708–1728 (2007)
Penney, G., Barratt, D., Chan, C., Slomczykowski, M., Carter, T., Edwards, P., Hawkes, D.: Cadaver Validation of Intensity-Based Ultrasound to CT Registration. Medical Image Analysis 10(3), 385–395 (2006)
Gill, S., Abolmaesumi, P., Fichtinger, G., Boisvert, J., Pichora, D., Borshneck, D., Mousavi, P.: Biomechanically Constrained Groupwise Ultrasound to CT Registration of the Lumbar Spine. Medical Image Analysis (2010) (in press)
Khallaghi, S., Mousavi, P., Borschneck, D., Fichtinger, G., Abolmaesumi, P.: Biomechanically Constrained Groupwise Statistical Shape Model to Ultrasound Registration of the Lumbar Spine. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 47–54. Springer, Heidelberg (2011)
Brounstein, A., Hacihaliloglu, I., Guy, P., Hodgson, A., Abugharbieh, R.: Towards Real-Time 3D US to CT Bone Image Registration Using Phase and Curvature Feature Based GMM Matching. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 235–242. Springer, Heidelberg (2011)
Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.: Bone Segmentation and Fracture Detection in Ultrasound Using 3D Local Phase Features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 287–295. Springer, Heidelberg (2008)
Jian, B., Vemuri, B.: Robust Point Set Registration Using Gaussian Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1633–1645 (2011)
Hacihaliloglu, I., Abugharbieh, R., Hodgson, A., Rohling, R.: Automatic Adaptive Parameterization in Local Phase Feature-Based Bone Segmentation in Ultrasound. Ultrasound in Med. and Biol. 37(10), 1689–1703 (2011)
Pauly, M., Gross, M., Kobbelt, L.: Efficient simplification of point- sampled surfaces. In: IEEE Proc. of Visualization (VIS 2002), pp. 163–170 (2002)
Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986)
Petrisora, B., Bhandarib, M.: Injuries to the pelvic ring: Incidence, classification, associated injuries and mortality rates. Current Orthopaedics 19(10), 327–333 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hacihaliloglu, I., Brounstein, A., Guy, P., Hodgson, A., Abugharbieh, R. (2012). 3D Ultrasound-CT Registration in Orthopaedic Trauma Using GMM Registration with Optimized Particle Simulation-Based Data Reduction. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. MICCAI 2012. Lecture Notes in Computer Science, vol 7511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33418-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-33418-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33417-7
Online ISBN: 978-3-642-33418-4
eBook Packages: Computer ScienceComputer Science (R0)