Abstract
A robust automated segmentation of abdominal organs can be crucial for computer aided diagnosis and laparoscopic surgery assistance. Many existing methods are specialised to the segmentation of individual organs or struggle to deal with the variability of the shape and position of abdominal organs. We present a general, fully-automated method for multi-organ segmentation of abdominal CT scans. The method is based on a hierarchical atlas registration and weighting scheme that generates target specific priors from an atlas database by combining aspects from multi-atlas registration and patch-based segmentation, two widely used methods in brain segmentation. This approach allows to deal with high inter-subject variation while being flexible enough to be applied to different organs. Our results on a dataset of 100 CT scans compare favourable to the state-of-the-art with Dice overlap values of 94%, 91%, 66% and 94% for liver, spleen, pancreas and kidney respectively.
Chapter PDF
Similar content being viewed by others
References
Shimizu, A., Kimoto, T., Kobatake, H., Nawano, S., Shinozaki, K.: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int. J. CARS 5, 85–98 (2010)
Park, H., Bland, P., Meyer, C.: Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE TMI 22(4), 483–492 (2003)
Okada, T., Yokota, K., Hori, M., Nakamoto, M., Nakamura, H., Sato, Y.: Construction of Hierarchical Multi-Organ Statistical Atlases and Their Application to Multi-Organ Segmentation from CT Images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 502–509. Springer, Heidelberg (2008)
Rusko, L., Bekes, G., Fidrich, M.: Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images. MedIA 13(6), 871–882 (2009)
Linguraru, M., Pura, J., Chowdhury, A., Summers, R.: Multi-organ Segmentation from Multi-phase Abdominal CT via 4D Graphs Using Enhancement, Shape and Location Optimization. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 89–96. Springer, Heidelberg (2010)
Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)
Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de Solorzano, C.: Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data. IEEE TMI 28(8), 1266–1277 (2009)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-Atlas-Based Segmentation With Local Decision Fusion - Application to Cardiac and Aortic Segmentation in CT Scans. IEEE TMI 28(7), 1000–1010 (2009)
Coupe, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)
Warfield, S.K., Zou, K.H., Wells III, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE TMI 23(7), 903–921 (2004)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE TMI 18(8), 712–721 (1999)
Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine 98(3), 278–284 (2010)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23(11), 1222–1239 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wolz, R., Chu, C., Misawa, K., Mori, K., Rueckert, D. (2012). Multi-organ Abdominal CT Segmentation Using Hierarchically Weighted Subject-Specific Atlases. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. MICCAI 2012. Lecture Notes in Computer Science, vol 7510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33415-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-33415-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33414-6
Online ISBN: 978-3-642-33415-3
eBook Packages: Computer ScienceComputer Science (R0)