Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Structured View on Sources of Uncertainty in Supervised Learning

  • Conference paper
Scalable Uncertainty Management (SUM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7520))

Included in the following conference series:

  • 1384 Accesses

Abstract

In supervised learning different sources of uncertainty influence the resulting functional behavior of the learning system which increases the risk of misbehavior. But still a learning system is often the only way to handle complex systems and large data sets. Hence it is important to consider the sources of uncertainty and to tackle them as far as possible. In this paper we categorize the sources of uncertainty and give a brief overview of uncertainty handling in supervised learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buschermöhle, A., Rosemann, N., Brockmann, W.: Stable Classification in Environments with Varying Degrees of Uncertainty. In: Proc. Int. Conf. on Computational Intelligence for Modelling, Control & Automation (CIMCA), pp. 441–446. IEEE Press (2008)

    Google Scholar 

  2. Buschermöhle, A., Schoenke, J., Brockmann, W.: Trusted Learner: An Improved Algorithm for Trusted Incremental Function Approximation. In: Proc. Symp. on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), pp. 16–24. IEEE Press (2011)

    Google Scholar 

  3. Buschermöhle, A., Schoenke, J., Brockmann, W.: Uncertainty and Trust Estimation in Incrementally Learning Function Approximation. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 32–41. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Dallaire, P., Besse, C., Chaib-Draa, B.: Learning Gaussian Process Models from Uncertain Data. In: Proc. Int. Conf. on Neural Information Processing (NIPS), pp. 433–440. Springer (2009)

    Google Scholar 

  5. Denoeux, T.: Function Approximation in the Framework of Evidence Theory: A Connectionist Approach. In: Proc. Int. Conf. on Neural Networks (ICNN), pp. 199–203. IEEE Press (1997)

    Google Scholar 

  6. Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics (SMC) 25(5), 804–813 (1995)

    Article  Google Scholar 

  7. Ge, J., Xia, Y., Nadungodage, C.: UNN: A Neural Network for Uncertain Data Classification. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 449–460. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Girard, A., Murray-Smith, R.: Learning a Gaussian Process Model with Uncertain Inputs. Technical Report TR-2003-144, University of Glasgow (2003)

    Google Scholar 

  9. Gonçalves, L.M.S., Fonte, C.C., Caetano, M.: Using Uncertainty Information to Combine Soft Classifications. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 455–463. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Hühn, J., Hüllermeier, E.: FR3: A Fuzzy Rule Learner for Inducing Reliable Classifiers. Trans. on Fuzzy Systems 17(1), 138–149 (2009)

    Article  Google Scholar 

  11. Hüllermeier, E., Brinker, K.: Learning Valued Preference Structures for Solving Classification Problems. Fuzzy Sets and Systems 159(18), 2337–2352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hüllermeier, E.: Uncertainty in Clustering and Classification. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 16–19. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Hülsmann, J., Buschermöhle, A., Brockmann, W.: Incorporating Dynamic Uncertainties into a Fuzzy Classifier. In: Proc. Conf. of the European Society for Fuzzy Logic and Technology (EUSFLAT), pp. 388–395. Atlantis Press (2011)

    Google Scholar 

  14. Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. Wiley (2006)

    Google Scholar 

  15. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, pp. 111–113. Wiley (2004)

    Google Scholar 

  16. Leonard, J.A., Kramer, M.A., Ungar, L.H.: Using Radial Basis Functions to Approximate a Function and its Error Bounds. IEEE Trans. on Neural Networks 3(4), 624–627 (1992)

    Article  Google Scholar 

  17. Lo, J.T., Bassu, D.: Robust approximation of uncertain functions where adaptation is impossible. In: Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 1956–1961. IEEE Press (2002)

    Google Scholar 

  18. Lu, D., Weng, Q.: A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. of Remote Sensing 28(5), 823–870 (2007)

    Article  Google Scholar 

  19. Lughofer, E., Guardiola, C.: Applying Evolving Fuzzy Models with Adaptive Local Error Bars to On-Line Fault Detection. In: Proc. of Genetic and Evolving Fuzzy Systems (GEFS), pp. 35–40. IEEE Press (2008)

    Google Scholar 

  20. Petit-Renaud, S., Denoeux, T.: Nonparametric Regression Analysis of Uncertain and Imprecise Data Using Belief Functions. Int. J. of Approximate Reasoning 35, 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Zhang, H.J.: Two-dimensional Active Learning for Image Classification. In: Proc. Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE Press (2008)

    Google Scholar 

  22. Qin, B., Xia, Y., Prabhakar, S., Tu, Y.: A Rule-Based Classification Algorithm for Uncertain Data. In: Proc. Int. Conf. on Data Engineerin (ICDE), pp. 1633–1640. IEEE Press (2009)

    Google Scholar 

  23. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  24. Settles, B.: Active Learning Literature Survey. Computer Sciences Technical Report 1648. University of Wisconsin (2010)

    Google Scholar 

  25. Tresp, V., Ahmad, S., Neuneier, R.: Training Neural Networks with Deficient Data. In: Advances in Neural Information Processing Systems (NIPS), pp. 128–135. MIT Press (1993)

    Google Scholar 

  26. Tresp, V., Neuneier, R., Ahmad, S.: Efficient Methods for Dealing With Missing Data in Supervised Learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 689–696. MIT Press (1995)

    Google Scholar 

  27. Zhang, J.B.T.: Support vector classification with input data uncertainty. In: Advances in Neural Information Processing Systems, vol. 17, pp. 161–169. MIT Press (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buschermöhle, A., Hülsmann, J., Brockmann, W. (2012). A Structured View on Sources of Uncertainty in Supervised Learning. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33362-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33361-3

  • Online ISBN: 978-3-642-33362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics