Abstract
In supervised learning different sources of uncertainty influence the resulting functional behavior of the learning system which increases the risk of misbehavior. But still a learning system is often the only way to handle complex systems and large data sets. Hence it is important to consider the sources of uncertainty and to tackle them as far as possible. In this paper we categorize the sources of uncertainty and give a brief overview of uncertainty handling in supervised learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buschermöhle, A., Rosemann, N., Brockmann, W.: Stable Classification in Environments with Varying Degrees of Uncertainty. In: Proc. Int. Conf. on Computational Intelligence for Modelling, Control & Automation (CIMCA), pp. 441–446. IEEE Press (2008)
Buschermöhle, A., Schoenke, J., Brockmann, W.: Trusted Learner: An Improved Algorithm for Trusted Incremental Function Approximation. In: Proc. Symp. on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), pp. 16–24. IEEE Press (2011)
Buschermöhle, A., Schoenke, J., Brockmann, W.: Uncertainty and Trust Estimation in Incrementally Learning Function Approximation. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 32–41. Springer, Heidelberg (2012)
Dallaire, P., Besse, C., Chaib-Draa, B.: Learning Gaussian Process Models from Uncertain Data. In: Proc. Int. Conf. on Neural Information Processing (NIPS), pp. 433–440. Springer (2009)
Denoeux, T.: Function Approximation in the Framework of Evidence Theory: A Connectionist Approach. In: Proc. Int. Conf. on Neural Networks (ICNN), pp. 199–203. IEEE Press (1997)
Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics (SMC) 25(5), 804–813 (1995)
Ge, J., Xia, Y., Nadungodage, C.: UNN: A Neural Network for Uncertain Data Classification. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 449–460. Springer, Heidelberg (2010)
Girard, A., Murray-Smith, R.: Learning a Gaussian Process Model with Uncertain Inputs. Technical Report TR-2003-144, University of Glasgow (2003)
Gonçalves, L.M.S., Fonte, C.C., Caetano, M.: Using Uncertainty Information to Combine Soft Classifications. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 455–463. Springer, Heidelberg (2010)
Hühn, J., Hüllermeier, E.: FR3: A Fuzzy Rule Learner for Inducing Reliable Classifiers. Trans. on Fuzzy Systems 17(1), 138–149 (2009)
Hüllermeier, E., Brinker, K.: Learning Valued Preference Structures for Solving Classification Problems. Fuzzy Sets and Systems 159(18), 2337–2352 (2008)
Hüllermeier, E.: Uncertainty in Clustering and Classification. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 16–19. Springer, Heidelberg (2010)
Hülsmann, J., Buschermöhle, A., Brockmann, W.: Incorporating Dynamic Uncertainties into a Fuzzy Classifier. In: Proc. Conf. of the European Society for Fuzzy Logic and Technology (EUSFLAT), pp. 388–395. Atlantis Press (2011)
Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. Wiley (2006)
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, pp. 111–113. Wiley (2004)
Leonard, J.A., Kramer, M.A., Ungar, L.H.: Using Radial Basis Functions to Approximate a Function and its Error Bounds. IEEE Trans. on Neural Networks 3(4), 624–627 (1992)
Lo, J.T., Bassu, D.: Robust approximation of uncertain functions where adaptation is impossible. In: Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 1956–1961. IEEE Press (2002)
Lu, D., Weng, Q.: A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. of Remote Sensing 28(5), 823–870 (2007)
Lughofer, E., Guardiola, C.: Applying Evolving Fuzzy Models with Adaptive Local Error Bars to On-Line Fault Detection. In: Proc. of Genetic and Evolving Fuzzy Systems (GEFS), pp. 35–40. IEEE Press (2008)
Petit-Renaud, S., Denoeux, T.: Nonparametric Regression Analysis of Uncertain and Imprecise Data Using Belief Functions. Int. J. of Approximate Reasoning 35, 1–28 (2004)
Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Zhang, H.J.: Two-dimensional Active Learning for Image Classification. In: Proc. Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE Press (2008)
Qin, B., Xia, Y., Prabhakar, S., Tu, Y.: A Rule-Based Classification Algorithm for Uncertain Data. In: Proc. Int. Conf. on Data Engineerin (ICDE), pp. 1633–1640. IEEE Press (2009)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)
Settles, B.: Active Learning Literature Survey. Computer Sciences Technical Report 1648. University of Wisconsin (2010)
Tresp, V., Ahmad, S., Neuneier, R.: Training Neural Networks with Deficient Data. In: Advances in Neural Information Processing Systems (NIPS), pp. 128–135. MIT Press (1993)
Tresp, V., Neuneier, R., Ahmad, S.: Efficient Methods for Dealing With Missing Data in Supervised Learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 689–696. MIT Press (1995)
Zhang, J.B.T.: Support vector classification with input data uncertainty. In: Advances in Neural Information Processing Systems, vol. 17, pp. 161–169. MIT Press (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buschermöhle, A., Hülsmann, J., Brockmann, W. (2012). A Structured View on Sources of Uncertainty in Supervised Learning. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-33362-0_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33361-3
Online ISBN: 978-3-642-33362-0
eBook Packages: Computer ScienceComputer Science (R0)