Nothing Special   »   [go: up one dir, main page]

Skip to main content

Harmonic Wavelets Based Identification of Nonlinear and Time-Variant Systems

  • Conference paper
Scalable Uncertainty Management (SUM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7520))

Included in the following conference series:

  • 1474 Accesses

Abstract

Structural systems subject to non-stationary excitations can often exhibit time-varying nonlinear behavior. In such cases, a reliable identification approach is critical for successful damage detection and for designing an effective structural health monitoring (SHM) framework. In this regard, an identification approach for nonlinear time-variant systems based on the localization properties of the harmonic wavelet transform is developed herein. The developed approach can be viewed as a generalization of the well established reverse MISO spectral identification approach to account for non-stationary inputs and time-varying system parameters. Several linear and nonlinear time-variant systems are used to demonstrate the reliability of the approach. The approach is found to perform satisfactorily even in the case of noise-corrupted data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bedrosian, E., Rice, S.O.: The output properties of Volterra systems (Nonlinear systems with memory) driven by harmonic and Gaussian Inputs. Proceedings of the IEEE 59, 1688–1707 (1971)

    Article  MathSciNet  Google Scholar 

  • Bendat, J.S., Palo, P.A., Coppolini, R.N.: A general identification technique for nonlinear differential equations of motion. Probabilistic Engineering Mechanics 7, 43–61 (1992)

    Article  Google Scholar 

  • Bendat, J.S., Palo, P.A., Coppolini, R.N.: Identification of physical parameters with memory in nonlinear systems. International Journal of Non-Linear Mechanics 30, 841–860 (1995)

    Article  MATH  Google Scholar 

  • Bendat, J.S.: Nonlinear systems techniques and applications. John Wiley and Sons (1998)

    Google Scholar 

  • Chakraborty, A., Basu, B., Mitra, M.: Identification of modal parameters of a mdof system by modified L-P wavelet packets. Journal of Sound and Vibration 295, 827–837 (2006)

    Article  Google Scholar 

  • Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Phil. Trans. R. Soc. A 365, 303–315 (2007)

    Article  Google Scholar 

  • Ghanem, R., Romeo, F.: A wavelet-based approach for the identification of linear time-varying dynamical systems. Journal of Sound and Vibration 234, 555–576 (2000)

    Article  MATH  Google Scholar 

  • Ghanem, R., Romeo, F.: A wavelet-based approach for model and parameter identification of nonlinear systems. International Journal of Non-Linear Mechanics 36, 835–859 (2001)

    Article  MATH  Google Scholar 

  • Hou, Z., Hera, A., Shinde, A.: Wavelet-based structural health monitoring of earthquake excited structures. Computer-Aided Civil and Infrastructure Engineering 21, 268–279 (2006)

    Article  Google Scholar 

  • Huang, G., Chen, X.: Wavelets-based estimation of multivariate evolutionary spectra and its application to nonstationary downburst winds. Engineering Structures 31, 976–989 (2009)

    Article  Google Scholar 

  • Kerschen, G., Worden, K., Vakakis, A., Golinval, J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mechanical Systems and Signal Processing 20, 505–592 (2006)

    Article  Google Scholar 

  • Kijewski, T., Kareem, A.: Wavelet transforms for system identification in civil engineering. Computer-Aided Civil and Infrastructure Engineering 18, 339–355 (2003)

    Article  Google Scholar 

  • Kougioumtzoglou, I.A., Spanos, P.D.: An approximate approach for nonlinear system response determination under evolutionary excitation. Current Science, Indian Academy of Sciences 97, 1203–1211 (2009)

    MathSciNet  Google Scholar 

  • Lamarque, C.-H., Pernot, S., Cuer, A.: Damping identification in multi-degree-of-freedom systems via a wavelet-logarithmic decrement - Part 1: Theory. Journal of Sound and Vibration 235, 361–374 (2000)

    Article  Google Scholar 

  • Liang, J., Chaudhuri, S.R., Shinozuka, M.: Simulation of non-stationary stochastic processes by spectral representation. Journal of Engineering Mechanics 133, 616–627 (2007)

    Article  Google Scholar 

  • Liu, S.C.: Evolutionary power spectral density of strong-motion earthquakes. Bulletin of the Seismological Society of America 60, 891–900 (1970)

    Google Scholar 

  • Newland, D.E.: Harmonic and musical wavelets. Proceedings of the Royal Society London A 444, 605–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Newland, D.E.: Practical signal analysis: Do wavelets make any difference? In: Proceedings of 16th ASME Biennial Conference on Vibration and Noise, Sacramento (1997)

    Google Scholar 

  • Newland, D.E.: Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets. Journal of Vibration and Acoustics 121, 149–155 (1999)

    Article  Google Scholar 

  • Paneer Selvam, R., Bhattacharyya, S.K.: System identification of a coupled two DOF moored floating body in random ocean waves. Journal of Offshore Mechanics and Arctic Engineering 128, 191–202 (2006)

    Article  Google Scholar 

  • Raman, S., Yim, S.C.S., Palo, P.A.: Nonlinear model for sub- and super-harmonic motions of a MDOF moored structure, Part 1 – System identification. Journal of Offshore Mechanics and Arctic Engineering 127, 283–290 (2005)

    Article  Google Scholar 

  • Rice, H.J., Fitzpatrick, J.A.: A generalized technique for spectral analysis of nonlinear systems. Mechanical Systems and Signal Processing 2, 195–207 (1988)

    Article  MATH  Google Scholar 

  • Roberts, J.B., Spanos, P.D.: Random Vibration and Statistical Linearization. Dover Publications, New York (2003)

    MATH  Google Scholar 

  • Schetzen, M.: The Volterra and Wiener theories of nonlinear systems. John Wiley and Sons (1980)

    Google Scholar 

  • Spanos, P.D., Solomos, G.P.: Markov approximation to transient vibration. Journal of Engineering Mechanics 109, 1134–1150 (1983)

    Article  Google Scholar 

  • Spanos, P.D., Lu, R.: Nonlinear system identification in offshore structural reliability. Journal of Offshore Mechanics and Arctic Engineering 117, 171–177 (1995)

    Article  Google Scholar 

  • Spanos, P.D., Zeldin, B.A.: Monte Carlo treatment of random fields: A broad perspective. Applied Mechanics Reviews 51, 219–237 (1998)

    Article  Google Scholar 

  • Spanos, P.D., Tezcan, J., Tratskas, P.: Stochastic processes evolutionary spectrum estimation via harmonic wavelets. Computer Methods in Applied Mechanics and Engineering 194, 1367–1383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Spanos, P.D., Failla, G.: Wavelets: Theoretical concepts and vibrations related applications. The Shock and Vibration Digest 37, 359–375 (2005)

    Article  Google Scholar 

  • Spanos, P.D., Kougioumtzoglou, I.A.: Harmonic wavelet-based statistical linearization of the Bouc-Wen hysteretic model. In: Faber, et al. (eds.) Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP 2011), pp. 2649–2656. Taylor and Francis Group (2011) ISBN: 978-0-415-66986-3

    Google Scholar 

  • Spanos, P.D., Kougioumtzoglou, I.A.: Harmonic wavelets based statistical linearization for response evolutionary power spectrum determination. Probabilistic Engineering Mechanics 27, 57–68 (2012)

    Article  Google Scholar 

  • Stasjewski, W.J.: Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. Journal of Sound and Vibration 214, 639–658 (1998)

    Article  Google Scholar 

  • Zeldin, B.A., Spanos, P.D.: Spectral identification of nonlinear structural systems. Journal of Engineering Mechanics 124, 728–733 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kougioumtzoglou, I.A., Spanos, P.D. (2012). Harmonic Wavelets Based Identification of Nonlinear and Time-Variant Systems. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33362-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33361-3

  • Online ISBN: 978-3-642-33362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics