Nothing Special   »   [go: up one dir, main page]

Skip to main content

Preferential Semantics for the Logic of Comparative Similarity over Triangular and Metric Models

  • Conference paper
Logics in Artificial Intelligence (JELIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7519))

Included in the following conference series:

Abstract

The logic of Comparative Similarity CSL (introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev in 2005) allows one to reason about distance comparison and similarity comparison within a modal language. The logic can express assertions of the kind “A is closer/more similar to B than to C” and has a natural application to spatial reasoning, as well as to reasoning about concept similarity in ontologies. The semantics of CSL is defined in terms of models based on different classes of distance spaces. In this work we consider the cases where the distance satisfies the triangular inequality and the one where it is a metric. We show that in both cases the semantics can be equivalently specified in terms of preferential structures. Finally, we consider the relation of CSL with conditional logics and we provide semantics and axiomatizations of conditional logics over distance models with these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts and similarity. J. Log. Comput. 17(3), 415–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Comparative Similarity, Tree Automata, and Diophantine Equations. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 651–665. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Sheremet, M., Wolter, F., Zakharyaschev, M.: A modal logic framework for reasoning about comparative distances and topology. APAL 161(4), 534–559 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)

    Google Scholar 

  5. Nute, D.: Topics in Conditional Logic. Reidel Publishing Company (1980)

    Google Scholar 

  6. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alenda, R., Olivetti, N., Schwind, C.: Comparative Concept Similarity over Minspaces: Axiomatisation and Tableaux Calculus. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 17–31. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Preferential semantics for the logic of comparative concepts similarity. In: Proc. TACL-5 (2010)

    Google Scholar 

  9. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau Calculi for \(\mathcal{CSL}\) over minspaces. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 52–66. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Alenda, R., Olivetti, N.: Tableau Calculus for the Logic of Comparative Similarity over Arbitrary Distance Spaces. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 52–66. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Alenda, R., Olivetti, N.: Preferential semantics for the logic of comparative similarity over triangular and metric models. Technical report, Aix-Marseille Université, CNRS, LSIS UMR 7296, 13397, Marseille, France (2012), http://www.lsis.org/squelettes/publication/upload/3355/alendaolivetti_jelia2012_techreport.pdf

  12. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR, pp. 202–213. Morgan Kaufmann (1994)

    Google Scholar 

  13. Giordano, L., Gliozzi, V., Olivetti, N.: Weak AGM postulates and strong ramsey test: A logical formalization. Artif. Intell. 168(1-2), 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. TOCL 10(3) (2009)

    Google Scholar 

  15. Veltman, F.: Logics for Conditionals. Ph.D. dissertation, U. of Amsterdam (1985)

    Google Scholar 

  16. Schlechta, K.: Coherent systems, vol 2. Elsevier Science (2004)

    Google Scholar 

  17. Williamson, T.: First-order logics for comparative similarity. Notre Dame Journal of Formal Logic 29(4), 457–481 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alenda, R., Olivetti, N. (2012). Preferential Semantics for the Logic of Comparative Similarity over Triangular and Metric Models. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33353-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33352-1

  • Online ISBN: 978-3-642-33353-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics