Abstract
The logic of Comparative Similarity CSL (introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev in 2005) allows one to reason about distance comparison and similarity comparison within a modal language. The logic can express assertions of the kind “A is closer/more similar to B than to C” and has a natural application to spatial reasoning, as well as to reasoning about concept similarity in ontologies. The semantics of CSL is defined in terms of models based on different classes of distance spaces. In this work we consider the cases where the distance satisfies the triangular inequality and the one where it is a metric. We show that in both cases the semantics can be equivalently specified in terms of preferential structures. Finally, we consider the relation of CSL with conditional logics and we provide semantics and axiomatizations of conditional logics over distance models with these properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts and similarity. J. Log. Comput. 17(3), 415–452 (2007)
Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Comparative Similarity, Tree Automata, and Diophantine Equations. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 651–665. Springer, Heidelberg (2005)
Sheremet, M., Wolter, F., Zakharyaschev, M.: A modal logic framework for reasoning about comparative distances and topology. APAL 161(4), 534–559 (2010)
Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)
Nute, D.: Topics in Conditional Logic. Reidel Publishing Company (1980)
Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87 (1998)
Alenda, R., Olivetti, N., Schwind, C.: Comparative Concept Similarity over Minspaces: Axiomatisation and Tableaux Calculus. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 17–31. Springer, Heidelberg (2009)
Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Preferential semantics for the logic of comparative concepts similarity. In: Proc. TACL-5 (2010)
Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau Calculi for \(\mathcal{CSL}\) over minspaces. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 52–66. Springer, Heidelberg (2010)
Alenda, R., Olivetti, N.: Tableau Calculus for the Logic of Comparative Similarity over Arbitrary Distance Spaces. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 52–66. Springer, Heidelberg (2010)
Alenda, R., Olivetti, N.: Preferential semantics for the logic of comparative similarity over triangular and metric models. Technical report, Aix-Marseille Université, CNRS, LSIS UMR 7296, 13397, Marseille, France (2012), http://www.lsis.org/squelettes/publication/upload/3355/alendaolivetti_jelia2012_techreport.pdf
Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR, pp. 202–213. Morgan Kaufmann (1994)
Giordano, L., Gliozzi, V., Olivetti, N.: Weak AGM postulates and strong ramsey test: A logical formalization. Artif. Intell. 168(1-2), 1–37 (2005)
Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. TOCL 10(3) (2009)
Veltman, F.: Logics for Conditionals. Ph.D. dissertation, U. of Amsterdam (1985)
Schlechta, K.: Coherent systems, vol 2. Elsevier Science (2004)
Williamson, T.: First-order logics for comparative similarity. Notre Dame Journal of Formal Logic 29(4), 457–481 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alenda, R., Olivetti, N. (2012). Preferential Semantics for the Logic of Comparative Similarity over Triangular and Metric Models. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-33353-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33352-1
Online ISBN: 978-3-642-33353-8
eBook Packages: Computer ScienceComputer Science (R0)