Nothing Special   »   [go: up one dir, main page]

Skip to main content

Online Recommender System for Radio Station Hosting

  • Conference paper
Perspectives in Business Informatics Research (BIR 2012)

Abstract

We describe a new recommender system for the Russian interactive radio network FMhost. The underlying model combines collaborative and user-based approaches. The system extracts information from tags of listened tracks for matching user and radio station profiles and follows an adaptive online learning strategy based on user history. We also provide some basic examples and describe the quality of service evaluation methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klapuri, A., Leider, C. (eds.): Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24-28. University of Miami (2011)

    Google Scholar 

  2. Anglade, A., Baccigalupo, C., Casagrande, N., Celma, Ò., Lamere, P.: Workshop report: Womrad 2010. In: Amatriain, X., Torrens, M., Resnick, P., Zanker, M. (eds.) RecSys, pp. 381–382. ACM (2010)

    Google Scholar 

  3. Anglade, A., Celma, O., Fields, B., Lamere, P., McFee, B.: Womrad: 2nd workshop on music recommendation and discovery. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 381–382. ACM, New York (2011)

    Chapter  Google Scholar 

  4. RecSys 2011: Proceedings of the Fifth ACM Conference on Recommender Systems, 609116. ACM, New York (2011)

    Google Scholar 

  5. Hilliges, O., Holzer, P., Klüber, R., Butz, A.: AudioRadar: A Metaphorical Visualization for the Navigation of Large Music Collections. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 82–92. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Gleich, D.F., Rasmussen, M., Lang, K., Zhukov, L.: The world of music: User ratings; spectral and spherical embeddings; map projections. Online report (2006)

    Google Scholar 

  7. Gleich, D.F., Zhukov, L., Rasmussen, M., Lang, K.: The World of Music: SDP Embedding of High Dimensional data. In: Information Visualization 2005 (2005), Interactive Poster

    Google Scholar 

  8. Brandenburg, K., Dittmar, C., Gruhne, M., Abeßer, J., Lukashevich, H., Dunker, P., Gärtner, D., Wolter, K., Grossmann, H.: Music search and recommendation. In: Furht, B. (ed.) Handbook of Multimedia for Digital Entertainment and Arts, pp. 349–384. Springer US (2009)

    Google Scholar 

  9. Celma, Ò.: Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer (2010)

    Google Scholar 

  10. Avesani, P., Massa, P., Nori, M., Susi, A.: Collaborative Radio Community. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 462–465. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Symeonidis, P., Ruxanda, M.M., Nanopoulos, A., Manolopoulos, Y.: Ternary semantic analysis of social tags for personalized music recommendation. In: Bello, J.P., Chew, E., Turnbull, D. (eds.) ISMIR, pp. 219–224 (2008)

    Google Scholar 

  12. Nanopoulos, A., Rafailidis, D., Symeonidis, P., Manolopoulos, Y.: Musicbox: Personalized music recommendation based on cubic analysis of social tags. IEEE Transactions on Audio, Speech & Language Processing 18(2), 407–412 (2010)

    Article  Google Scholar 

  13. Koenigstein, N., Dror, G., Koren, Y.: Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 165–172. ACM, New York (2011)

    Chapter  Google Scholar 

  14. Celma, O., Lamere, P.: Music recommendation and discovery revisited. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 7–8. ACM, New York (2011)

    Chapter  Google Scholar 

  15. Hu, Y., Ogihara, M.: Nextone player: A music recommendation system based on user behavior. In: [1], pp. 103–108

    Google Scholar 

  16. Bogdanov, D., Herrera, P.: How much metadata do we need in music recommendation? a subjective evaluation using preference sets. In: [1], pp. 97–102

    Google Scholar 

  17. Mesnage, C.S., Rafiq, A., Dixon, S., Brixtel, R.P.: Music discovery with social networks. In: Workshop on Music Recommendation and Discovery 2011, pp. 1–6 (October 2011)

    Google Scholar 

  18. Barthet, M., Anglade, A., Fazekas, G., Kolozali, S., Macrae, R.: Music recommendation for music learning: Hotttabs, a multimedia guitar tutor. In: Workshop on Music Recommendation and Discovery 2011, pp. 7–13 (October 2011)

    Google Scholar 

  19. Tatlı, I., Birturk, A.: Using semantic relations in context-based music recommendations. In: Workshop on Music Recommendation and Discovery 2011, pp. 14–17 (October 2011)

    Google Scholar 

  20. Knees, P., Schedl, M.: Towards semantic music information extraction from the web using rule patterns and supervised learning. In: Workshop on Music Recommendation and Discovery 2011, pp. 18–25 (October 2011)

    Google Scholar 

  21. Knopke, I.: The importance of service and genre in recommendations for online radio and television programmes. In: Workshop on Music Recommendation and Discovery 2011, pp. 26–29 (October 2011)

    Google Scholar 

  22. Popescu, G., Pu, P.: Probabilistic game theoretic algorithms for group recommender systems. In: Workshop on Music Recommendation and Discovery 2011, pp. 7–12 (October 2011)

    Google Scholar 

  23. Ignatov, D.I., Poelmans, J., Zaharchuk, V.: Recommender System Based on Algorithm of Bicluster Analysis RecBi. In: Ignatov, D., Poelmans, J., Kuznetsov, S. (eds.) CDUD 2011 - Concept Discovery in Unstructured Data. CEUR Workshop proceedings, vol. 757, pp. 122–126 (2011)

    Google Scholar 

  24. Ignatov, D.I., Kuznetsov, S.O.: Concept-based Recommendations for Internet Advertisement. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proc. CLA 2008. CEUR WS, vol. 433, pp. 157–166. Palacký University, Olomouc (2008)

    Google Scholar 

  25. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer-Verlag New York, Inc., Secaucus (1999)

    Book  Google Scholar 

  26. Edwards, W., Barron, F.: SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement. Organizational Behavior and Human Decision Processes 60(3), 306–325 (1994)

    Article  Google Scholar 

  27. Ignatov, D.I., Poelmans, J., Dedene, G., Viaene, S.: A New Cross-Validation Technique to Evaluate Quality of Recommender Systems. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds.) PerMIn 2012. LNCS, vol. 7143, pp. 195–202. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  Google Scholar 

  29. Vander Wal, T.: Folksonomy Coinage and Definition (2007), http://vanderwal.net/folksonomy.html (accessed on March 12, 2012)

  30. Ignatov, D.I., Kuznetsov, S.O., Magizov, R.A., Zhukov, L.E.: From Triconcepts to Triclusters. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 257–264. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ignatov, D.I., Konstantinov, A.V., Nikolenko, S.I., Poelmans, J., Zaharchuk, V.V. (2012). Online Recommender System for Radio Station Hosting. In: Aseeva, N., Babkin, E., Kozyrev, O. (eds) Perspectives in Business Informatics Research. BIR 2012. Lecture Notes in Business Information Processing, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33281-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33281-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33280-7

  • Online ISBN: 978-3-642-33281-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics