Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Unsupervised Evaluation Measure of Image Segmentation: Application to Flower Image Segmentation

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 2912 Accesses

Abstract

We present a new unsupervised metric for segmentation result evaluation based on Bayes classification error and image global contrast. First, we presented a comparative study between several unsupervised metrics in order to prove their limits. The qualitative study was performed to make a preliminary selection and to discard some measures unsuitable for evaluation of foreground/background segmentation on flower images. For the quantitative study, we proposed a validation protocol based on the vote technique and involving a comparison to the ground truth. Experiments were performed on Oxford flower dataset in order to select the best result between different segmentation results. The obtained result showed that our proposed metric gives the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liedtke, C.E., Gahm, T., Kappei, F.: Segmentation of microscopic cell scenes. Analytical and Quantitative Cytologie and Histology 9, 197–211 (1987)

    Google Scholar 

  2. Cho, K., Meer, P.: Image segmentation from consensus information. Computer Vision and Image Understanding 68, 72–89 (1997)

    Article  Google Scholar 

  3. Voisine, N.: Approche adaptative de coopération hiérarchique de méthodes de segmentation: application aux images multicomposantes. PhD thesis. Université de Rennes I (2002)

    Google Scholar 

  4. Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognition 29, 1335–1346 (1996)

    Article  Google Scholar 

  5. Chabrier, S., Laurent, H., Emile, B., Rosenburger, C., Marche, P.: A comparative study of supervised evaluation criteria for image segmentation. In: European Signal Processing Conference, pp. 1143–1146 (2004)

    Google Scholar 

  6. Yang, L., Albregtsen, L., Lonnestad, T., Grottum, P.: A supervised approach to the evaluation of image segmentation methods. In: Computer Analysis of Images and Patterns, pp. 759–765. Springer (1995)

    Google Scholar 

  7. Coquin, D., Bolon, P., Chehadeh, Y.: Evaluation quantitative d’images filtrées. In: GRETSI 1997, vol. 2, pp. 1351–1354 (1997)

    Google Scholar 

  8. Wilson, D.L., Baddeley, A.J., Owens, R.A.: A new metric for grey-scale image comparison. International Journal of Computer Vision 24, 5–17 (1997)

    Article  Google Scholar 

  9. Zamperoni, P., Starovoitov, V.: On measures of dissimilarity between arbitrary gray-scale images. International Journal of Shape Modeling 2, 189–213 (1996)

    Article  MATH  Google Scholar 

  10. Odet, C., Belaroussi, B., Cattin, H.: Scalable discrepancy measures for segmentation evaluation. In: ICIP 2002, pp. 785–788 (2002)

    Google Scholar 

  11. Pratt, W., Faugeras, O.D., Gagalowicz, A.: Visual discrimination of stochastic texture fields. IEEE Transactions on Systems, Man, and Cybernetics 8, 796–804 (1978)

    Article  Google Scholar 

  12. Roman-Roldan, R., Gomez-Lopera, J.F., Atae-allah, C., Martinez-Aroza, J., Escamilla, P.L.L.: A measure of quality for evaluating methods of segmentation and edge detection. Pattern Recognition 34, 969–980 (2001)

    Article  MATH  Google Scholar 

  13. Weszka, J.S., Rosenfeld, A.: Threshold evaluation techniques. IEEE Transactions Systems, Man, and Cybernetics 8, 622–629 (1978)

    Article  Google Scholar 

  14. Levine, M.D., Nazif, A.M.: Dynamic measurement of computer generated image segmentations. IEEE Trans. Pattern Anal. Mach. Intell. 7, 155–164 (1985)

    Article  Google Scholar 

  15. Sahoo, P.K., Soltani, S., Wong, A.K., Chen, Y.C.: A survey of thresholding techniques. Comput. Vision Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  16. Cocquerez, J.P., Devars, J.: Détection de contours dans les images aériennes: Nouveaux opérateurs. Traitement du Signal 2, 45–65 (1985)

    Google Scholar 

  17. Demigny, D., Kamlé, T.: A discrete expression of canny’s criteria for step edge detector performances evaluation. EEE Transactions on Pattern Analysis and Machine Intelligence 19, 1199–1211 (1997)

    Article  Google Scholar 

  18. Han, J.H., Kim, T.Y.: Ambiguity distance: an edge evaluation measure using fuzziness of edges. Fuzzy Sets and Systems, 311–324 (2002)

    Google Scholar 

  19. Tan, H., Gelfand, S., Delp, E.: A cost minimization approach to edge detection using simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 3–18 (1992)

    Article  Google Scholar 

  20. Pal, N.R., Pal, S.K.: Entropic thresholding. Signal Processing 16, 97–108 (1989)

    Article  MathSciNet  Google Scholar 

  21. Liu, J., Yang, Y.H.: Multiresolution color image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 689–700 (1994)

    Article  Google Scholar 

  22. Zeboudj, R.: Filtrage, Seuillage Automatique, Contraste et Contours: du Pré-Traitement à l’Analyse d’image. PhD thesis. Université de Saint Etienne (1988)

    Google Scholar 

  23. Rosenberger, C., Chehdi, K.: Genetic fusion: application to multi-components image segmentation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2223–2226 (2000)

    Google Scholar 

  24. Cochran, W.G., Snedecor, G.W.: Méthodes statistiques. Association de Coordination Technique, Agricole, Paris, France (1957)

    Google Scholar 

  25. Nilsback, M., Zisserman, A.: Delving deeper into the whorl of flower segmentation. IVC 28, 1049–1062 (2010)

    Article  Google Scholar 

  26. Shufelt, J.A.: Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Trans. Pattern Anal. Mach. Intell. 21, 311–326 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Najjar, A., Zagrouba, E. (2012). An Unsupervised Evaluation Measure of Image Segmentation: Application to Flower Image Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics