Abstract
We present a novel way to efficiently compute Riemannian geodesic distance over a two-dimensional domain. It is based on a previously presented method for computation of geodesic distances on surface meshes. Our method is adapted for rectangular grids, equipped with a variable anisotropic metric tensor. Processing and visualization of such tensor fields is common in certain applications, for instance structure tensor fields in image analysis and diffusion tensor fields in medical imaging.
The included benchmark study shows that our method provides significantly better results in anisotropic regions and is faster than current stat-of-the-art solvers. Additionally, our method is straightforward to code; the test implementation is less than 150 lines of C++ code.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Weighted distance maps computation on parametric three-dimensional manifolds. Journal of Computational Physics 225, 771–784 (2007)
Bruss, A.R.: The eikonal equation: Some results applicable to computer vision. In: Horn, B.K.P., Brooks, M.J. (eds.) Shape from Shading, pp. 69–87. MIT Press, Cambridge (1989)
Feng, L., Hotz, I., Hamann, B., Joy, K.: Anisotropic noise samples. IEEE Transactions on Visualization and Computer Graphics 14, 342–354 (2008)
Du, Q., Wang, D.: Anisotropic centroidal voronoi tessellations and their applications. SIAM J. Sci. Comput. 26, 737–761 (2005)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)
Verbeek, P.W., Verwer, B.J.: Shading from shape, the eikonal equation solved by grey-weighted distance transform. Pattern Recogn. Lett. 11, 681–690 (1990)
Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis 29, 867–884 (1992)
Rosin, P.L., West, G.A.W.: Salience distance transforms. Graph. Models Image Process. 57, 483–521 (1995)
Parazzoli, C.G., Koltenbah, B.E.C., Greegor, R.B., Lam, T.A., Tanielian, M.H.: Eikonal equation for a general anisotropic or chiral medium: application to a negative-graded index-of-refraction lens with an anisotropic material. J. Opt. Soc. Am. B 23, 439–450 (2006)
Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhauser (1997)
Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of hamilton-jacobi equations. SIAM Journal on Numerical Analysis 41, 673–694 (2004)
Jeong, W.-K., Fletcher, P.T., Tao, R., Whitaker, R.T.: Interactive visualization of volumetric white matter connectivity in dt-mri using a parallel-hardware hamilton-jacobi solver. IEEE Transactions on Visualization and Computer Graphics (Proceedings of IEEE Visualization 2007), 1480–1487 (2007)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591–1595 (1996)
Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40, 1528–1538 (1995)
Konukoglu, E., Sermesant, M., Clatz, O., Peyrat, J.-M., Delingette, H., Ayache, N.: A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 687–699. Springer, Heidelberg (2007)
Lenglet, C., Prados, E., Pons, J.P., Deriche, R., Faugeras, O.: Brain connectivity mapping using Riemannian geometry, control theory and PDEs. SIAM Journal on Imaging Sciences (2008)
Novotni, M., Klein, R.: Computing geodesic distances on triangular meshes. In: Proceedings of The 10th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2002 (2002)
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 553–560. ACM Press, New York (2005)
Reimers, M.: Topics in Mesh based Modelling. PhD thesis, Univ. of Oslo (2004)
Gonzalez, R., Rofman, E.: On deterministic control problems: An approximation procedure for the optimal cost i. the stationary problem. SIAM Journal on Control and Optimization 23, 242–266 (1985)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing: Analysis and Machine Vision. Thomson-Engineering (1998)
Malm, P., Brun, A.: Closing curves with Riemannian dilation: Application to segmentation in automated cervical cancer screening. In: Proc. of 5th International Symposium on Visual Computing, Las Vegas, Nevada, USA (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nilsson, O., Reimers, M., Museth, K., Brun, A. (2012). A Novel Algorithm for Computing Riemannian Geodesic Distance in Rectangular 2D Grids. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-33191-6_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33190-9
Online ISBN: 978-3-642-33191-6
eBook Packages: Computer ScienceComputer Science (R0)