Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Algorithm for Computing Riemannian Geodesic Distance in Rectangular 2D Grids

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 2872 Accesses

Abstract

We present a novel way to efficiently compute Riemannian geodesic distance over a two-dimensional domain. It is based on a previously presented method for computation of geodesic distances on surface meshes. Our method is adapted for rectangular grids, equipped with a variable anisotropic metric tensor. Processing and visualization of such tensor fields is common in certain applications, for instance structure tensor fields in image analysis and diffusion tensor fields in medical imaging.

The included benchmark study shows that our method provides significantly better results in anisotropic regions and is faster than current stat-of-the-art solvers. Additionally, our method is straightforward to code; the test implementation is less than 150 lines of C++ code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Weighted distance maps computation on parametric three-dimensional manifolds. Journal of Computational Physics 225, 771–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruss, A.R.: The eikonal equation: Some results applicable to computer vision. In: Horn, B.K.P., Brooks, M.J. (eds.) Shape from Shading, pp. 69–87. MIT Press, Cambridge (1989)

    Google Scholar 

  3. Feng, L., Hotz, I., Hamann, B., Joy, K.: Anisotropic noise samples. IEEE Transactions on Visualization and Computer Graphics 14, 342–354 (2008)

    Article  Google Scholar 

  4. Du, Q., Wang, D.: Anisotropic centroidal voronoi tessellations and their applications. SIAM J. Sci. Comput. 26, 737–761 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Verbeek, P.W., Verwer, B.J.: Shading from shape, the eikonal equation solved by grey-weighted distance transform. Pattern Recogn. Lett. 11, 681–690 (1990)

    Article  MATH  Google Scholar 

  7. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis 29, 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rosin, P.L., West, G.A.W.: Salience distance transforms. Graph. Models Image Process. 57, 483–521 (1995)

    Article  MATH  Google Scholar 

  9. Parazzoli, C.G., Koltenbah, B.E.C., Greegor, R.B., Lam, T.A., Tanielian, M.H.: Eikonal equation for a general anisotropic or chiral medium: application to a negative-graded index-of-refraction lens with an anisotropic material. J. Opt. Soc. Am. B 23, 439–450 (2006)

    Article  Google Scholar 

  10. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhauser (1997)

    Google Scholar 

  11. Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of hamilton-jacobi equations. SIAM Journal on Numerical Analysis 41, 673–694 (2004)

    Article  MathSciNet  Google Scholar 

  12. Jeong, W.-K., Fletcher, P.T., Tao, R., Whitaker, R.T.: Interactive visualization of volumetric white matter connectivity in dt-mri using a parallel-hardware hamilton-jacobi solver. IEEE Transactions on Visualization and Computer Graphics (Proceedings of IEEE Visualization 2007), 1480–1487 (2007)

    Google Scholar 

  13. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40, 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Konukoglu, E., Sermesant, M., Clatz, O., Peyrat, J.-M., Delingette, H., Ayache, N.: A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 687–699. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Lenglet, C., Prados, E., Pons, J.P., Deriche, R., Faugeras, O.: Brain connectivity mapping using Riemannian geometry, control theory and PDEs. SIAM Journal on Imaging Sciences (2008)

    Google Scholar 

  17. Novotni, M., Klein, R.: Computing geodesic distances on triangular meshes. In: Proceedings of The 10th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2002 (2002)

    Google Scholar 

  18. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 553–560. ACM Press, New York (2005)

    Chapter  Google Scholar 

  19. Reimers, M.: Topics in Mesh based Modelling. PhD thesis, Univ. of Oslo (2004)

    Google Scholar 

  20. Gonzalez, R., Rofman, E.: On deterministic control problems: An approximation procedure for the optimal cost i. the stationary problem. SIAM Journal on Control and Optimization 23, 242–266 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sonka, M., Hlavac, V., Boyle, R.: Image Processing: Analysis and Machine Vision. Thomson-Engineering (1998)

    Google Scholar 

  22. Malm, P., Brun, A.: Closing curves with Riemannian dilation: Application to segmentation in automated cervical cancer screening. In: Proc. of 5th International Symposium on Visual Computing, Las Vegas, Nevada, USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nilsson, O., Reimers, M., Museth, K., Brun, A. (2012). A Novel Algorithm for Computing Riemannian Geodesic Distance in Rectangular 2D Grids. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics