Abstract
The classical method for program analysis by abstract interpretation consists in computing a increasing sequence with widening, which converges towards a correct solution, then computing a decreasing sequence of correct solutions without widening. It is generally admitted that, when the decreasing sequence reaches a fixpoint, it cannot be improved further. As a consequence, all efforts for improving the precision of an analysis have been devoted to improving the limit of the increasing sequence. In this paper, we propose a method to improve a fixpoint after its computation. The method consists in projecting the solution onto well-chosen components and to start again increasing and decreasing sequences from the result of the projection.
This work has been partially supported by the ASOPT project of the “Agence Nationale de la Recherche” of the French Ministry of Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: ACM SIGPLAN SIGSOFT Conference on Programming Language Design and Implementation, PLDI 2003, San Diego (Ca.), pp. 196–207 (June 2003)
Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast Acceleration of Symbolic Transition Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)
Bultan, T., Gerber, R., Pugh, W.: Symbolic Model Checking of Infinite State Systems using Presburger Arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997)
Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise Widening Operators for Convex Polyhedra. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 337–354. Springer, Heidelberg (2003)
Bourdoncle, F.: Efficient Chaotic Iterations Strategies with Widening. In: Pottosin, I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141. Springer, Heidelberg (1993)
Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: 2nd Int. Symp. on Programming. Dunod, Paris (1976)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: 4th ACM Symposium on Principles of Programming Languages, POPL 1977, Los Angeles (January 1977)
Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: 5th ACM Symposium on Principles of Programming Languages, POPL 1978, Tucson, Arizona (January 1978)
Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)
Cortesi, A., Zanioli, M.: Widening and narrowing operators for abstract interpretation. Computer Languages, Systems & Structures 37(1), 24–42 (2011)
Gonnord, L., Halbwachs, N.: Combining Widening and Acceleration in Linear Relation Analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006)
Goubault, É.: Static Analyses of the Precision of Floating-Point Operations. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001)
Gopan, D., Reps, T.: Lookahead Widening. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)
Gopan, D., Reps, T.: Guided Static Analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)
Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy Iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)
Halbwachs, N.: Delay Analysis in Synchronous Programs. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 333–346. Springer, Heidelberg (1993)
Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)
Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009)
Lattner, C., Adve, V.: LLVM: a compilation framework fopr lifelong program analysis & transformation. In: CGO 2004, pp. 75–86. IEEE Computer Society, Washington, DC (2004)
Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with Thresholds for Programs with Complex Control Graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidelberg (2011)
Miné, A.: Weakly relational numerical abstract domains. PhD thesis, Ecole Polytechnique (2004)
Monniaux, D., Le Guen, J.: Stratified static analysis based on variable dependencies. In: Third International Workshop on Numerical and Symbolic Abstract Domains, Venice (September 2011)
Putot, S., Goubault, É., Martel, M.: Static Analysis-Based Validation of Floating-Point Computations. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical Software with Result Verification. LNCS, vol. 2991, pp. 306–313. Springer, Heidelberg (2004)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-Based Linear-Relations Analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Systems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)
Su, Z., Wagner, D.: A Class of Polynomially Solvable Range Constraints for Interval Analysis without Widenings and Narrowings. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 280–295. Springer, Heidelberg (2004)
Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1, 146–160 (1972)
Wolper, P., Boigelot, B.: Verifying Systems with Infinite but Regular State Spaces. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)
Wang, C., Yang, Z., Gupta, A., Ivančić, F.: Using Counterexamples for Improving the Precision of Reachability Computation with Polyhedra. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 352–365. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Halbwachs, N., Henry, J. (2012). When the Decreasing Sequence Fails. In: Miné, A., Schmidt, D. (eds) Static Analysis. SAS 2012. Lecture Notes in Computer Science, vol 7460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33125-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-33125-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33124-4
Online ISBN: 978-3-642-33125-1
eBook Packages: Computer ScienceComputer Science (R0)