Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Self-adjusting Data Structure for Multidimensional Point Sets

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

A data structure is said to be self-adjusting if it dynamically reorganizes itself to adapt to the pattern of accesses. Efficiency is typically measured in terms of amortized complexity, that is, the average running time of an access over an arbitrary sequence of accesses. The best known example of such a data structure is Sleator and Tarjan’s splay tree. In this paper, we introduce a self-adjusting data structure for storing multidimensional point data. The data structure is based on a quadtree-like subdivision of space. Like a quadtree, the data structure implicitly encodes a subdivision of space into cells of constant combinatorial complexity. Each cell is either a quadtree box or the set-theoretic difference of two such boxes. Similar to the traditional splay tree, accesses are based on an splaying operation that restructures the tree in order to bring an arbitrary internal node to the root of the tree. We show that many of the properties enjoyed by traditional splay trees can be generalized to this multidimensional version.

This work has been supported by the National Science Foundation under grant CCF-1117259 and the Office of Naval Research under grant N00014-08-1-1015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for planar point location. ACM Trans. Algorithms, 3, article: 17 (2007)

    Google Scholar 

  2. Arya, S., Malamatos, T., Mount, D.M., Wong, K.-C.: Optimal expected-case planar point location. SIAM J. Comput. 37, 584–610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. Theory Appl. 17, 135–163 (2001)

    Article  MathSciNet  Google Scholar 

  4. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching. J. Assoc. Comput. Mach. 45, 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bern, M.: Approximate closest-point queries in high dimensions. Inform. Process. Lett. 45, 95–99 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theo. Comp. Sci. 382, 86–96 (2007)

    Article  MATH  Google Scholar 

  7. Chan, T.: A minimalist’s implementation of an approximate nearest neighbor algorithm in fixed dimensions (2006), http://www.cs.uwaterloo.ca/~tmchan/pub.html (unpublished manuscript)

  8. Chan, T.M.: Closest-point problems simplified on the ram. In: Proc. 13th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 472–473 (2002)

    Google Scholar 

  9. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., pp. 226–232 (1983)

    Google Scholar 

  10. Cole, R.: On the dynamic finger conjecture for splay trees. Part 2 The proof. SIAM J. Comput. 30, 44–85 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic finger conjecture for splay trees. Part 1: Splay sorting log n-block sequences. SIAM J. Comput. 30, 1–43 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: The geometry of binary search tree. In: Proc. 20th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 496–505 (2009)

    Google Scholar 

  13. Elmasry, A.: On the sequential access theorem and deque conjecture for splay trees. Theo. Comp. Sci. 314, 459–466 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eppstein, D., Goodrich, M.T., Sun, J.Z.: The skip quadtree: A simple dynamic data structure for multidimensional data. Internat. J. Comput. Geom. Appl. 18, 131–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Georgakopoulos, G.F.: Chain-splay trees, or, how to achieve and prove loglogN-competitiveness by splaying. Inform. Process. Lett. 106, 37–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  17. Iacono, J.: Alternatives to splay trees with O(logn) worst-case access times. In: Proc. 12th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 516–522 (2001)

    Google Scholar 

  18. Iacono, J.: Distribution-sensitive data structures. PhD thesis, Rutgers, The state University of New Jersey, New Brunswick, New Jersey (2001)

    Google Scholar 

  19. Iacono, J.: Expected asymptotically optimal planar point location. Comput. Geom. Theory Appl. 29, 19–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iacono, J.: Key-independent optimality. Algorithmica 42, 3–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mount, D.M., Park, E.: A dynamic data structure for approximate range searching. In: Proc. 26th Annu. Sympos. Comput. Geom., pp. 247–256 (2010)

    Google Scholar 

  22. Pettie, S.: Splay trees, Davenport-Schinzel sequences, and the deque conjecture. In: Proc. 19th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 1115–1124 (2008)

    Google Scholar 

  23. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33, 668–676 (1990)

    Article  Google Scholar 

  24. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco (2006)

    MATH  Google Scholar 

  25. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16, 464–497 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. Assoc. Comput. Mach. 32, 652–686 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Subramanian, A.: An explanation of splaying. J. Algorithms 20(3), 512–525 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sundar, R.: On the deque conjecture for the splay algorithm. Combinatorica 12, 95–124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica 5, 367–378 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, C.C., Derryberry, J., Sleator, D.D.: o(loglogn)-competitive dynamic binary search trees. In: Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 374–383 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, E., Mount, D.M. (2012). A Self-adjusting Data Structure for Multidimensional Point Sets. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics