Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 190))

  • 1598 Accesses

Abstract

Deconvolution consists of reconstructing a signal from blurred (and usually noisy) sensory observations. It requires perfect knowledge of the impulse response of the sensor. Relevant works in the litterature propose methods with improved precision and robustness. But those methods are not able to account for a partial knowledge of the impulse response of the sensor. In this article, we experimentally show that inverting a Choquet capacity-based model of an imprecise knowledge of this impulse response allows to robustly recover the measured signal. The method we use is an interval valued extension of the well known Schultz procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Campos, L., Huete, J., Moral, S.: Probabilities intervals: a tool for uncertain reasoning. Int. J. Uncertain. Fuzz. 2, 167–196 (1994)

    Article  MATH  Google Scholar 

  2. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  3. Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  4. Eggermont, P., Herman, G.: Iterative algorithms for large partitioned linear systems with applications to image reconstruction. Linear Algebra Appl. 40, 37–67 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grabisch, M., Labreuche, C.: The symmetric and asymmetric Choquet integral on finite spaces for decision making. Stat. Pap. 43, 37–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Herzberger, J., Petkovi, L.: Efficient iterative algorithms for bounding the inverse of a matrix. Computing 44, 237–244 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hudson, M., Lee, T.: Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to poisson noise. Comput. Stat. Data Anal. 26(4), 393–410 (1998)

    Article  MATH  Google Scholar 

  8. Jalobeanu, A., Blanc-Ferraud, L., Zerubia, J.: Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method. Pattern Recogn. 35(2), 341–352 (2002)

    Article  MATH  Google Scholar 

  9. Kaaresen, K.F.: Deconvolution of sparse spike trains by iterated window maximization. IEEE Trans. Signal Process. 45(5), 1173–1183 (1997)

    Article  Google Scholar 

  10. Kalifa, J., Mallat, S.: Thresholding estimators for linear inverse problems and deconvolutions. Ann. Stat. 1, 58–109 (2003)

    MathSciNet  Google Scholar 

  11. Loquin, K., Strauss, O.: On the granularity of summative kernels. Fuzzy Set. Syst. 159(15), 1952–1972 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Poree, F., Bansard, J.-Y., Kervio, G., Carrault, G.: Stability analysis of the 12-lead ECG morphology in different physiological conditions of interest for biometric applications. In: Proc. of the Int. Conf. on Computers in Cardiology 2009, Park City, UT, USA, vol. 36, pp. 285–288 (2009)

    Google Scholar 

  13. Rice, J.: Choice of smoothing parameter in deconvolution problems. Contemp Math. 59, 137–151 (1986)

    Article  Google Scholar 

  14. Rico, A., Strauss, O.: Imprecise expectations for imprecise linear filtering. Int. J. Approx. Reason. 51, 933–947 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sainz, M., Herrero, P., Armengol, J., Vehí, J.: Continuous minimax optimization using modal intervals. J. Math. Anal. Appl. 339, 18–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Strauss, O., Rico, A.: Towards interval-based non-additive deconvolution in signal processing. Soft Comput. 16(5), 809–820 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Strauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strauss, O., Rico, A. (2013). Towards a Robust Imprecise Linear Deconvolution. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics