Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation of Novel Soft Computing Methods for the Prediction of the Dental Milling Time-Error Parameter

  • Conference paper
Soft Computing Models in Industrial and Environmental Applications

Abstract

This multidisciplinary study presents the application of two well known soft computing methods – flexible neural trees, and evolutionary fuzzy rules – for the prediction of the error parameter between real dental milling time and forecast given by the dental milling machine. In this study a real data set obtained by a dynamic machining center with five axes simultaneously is analyzed to empirically test the novel system in order to optimize the time error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. Chapman & Hall/CRC (2009)

    Google Scholar 

  2. Chang, P., Liao, T.: Combining som and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Applied Soft Computing 6(2), 198–206 (2006)

    Article  Google Scholar 

  3. Chen, Y., Abraham, A.: Flexible Neural Tree: Foundations and Applications. In: Chen, Y., Abraham, A. (eds.) Tree-Structure Based Hybrid Computational Intelligence. ISRL, vol. 2, pp. 39–96. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Chen, Y., Yang, B., Meng, Q.: Small-time scale network traffic prediction based on flexible neural tree. Appl. Soft Comput. 12(1), 274–279 (2012)

    Article  Google Scholar 

  5. Custodio, L.M.M., Sentieiro, J.J.S., Bispo, C.F.G.: Production planning and scheduling using a fuzzy decision system. IEEE Transactions on Robotics and Automation 10(2), 160–168 (1994)

    Article  Google Scholar 

  6. Ding, S., Li, H., Su, C., Yu, J., Jin, F.: Evolutionary artificial neural networks: a review. Artificial Intelligence Review, 1–10 (2011), doi:10.1007/s10462-011-9270-6

    Google Scholar 

  7. Krömer, P., Platoš, J., Snášel, V., Abraham, A.: Fuzzy classification by evolutionary algorithms. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 313–318. IEEE System, Man, and Cybernetics Society (2011)

    Google Scholar 

  8. Krömer, P., Platoš, J., Snášel, V., Abraham, A., Prokop, L., Mišák, S.: Genetically evolved fuzzy predictor for photovoltaic power output estimation. In: 2011 Third International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 41–46. IEEE (2011)

    Google Scholar 

  9. Pasi, G.: Fuzzy sets in information retrieval: State of the art and research trends. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. STUDFUZZ, vol. 220, pp. 517–535. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Peng, L., Yang, B., Zhang, L., Chen, Y.: A parallel evolving algorithm for flexible neural tree. Parallel Computing 37(10-11), 653–666 (2011)

    Article  MathSciNet  Google Scholar 

  11. Qi, F., Liu, X., Ma, Y.: Synthesis of neural tree models by improved breeder genetic programming. Neural Computing & Applications 21, 515–521 (2012), doi:10.1007/s00521-010-0451-z

    Article  Google Scholar 

  12. Sedano, J., Corchado, E., Villar, J., Curiel, L., de la Cal, E.: Detection of heat flux failures in building using a soft computing diagnostic system. Neural Network World 20(7), 883–898 (2010)

    Google Scholar 

  13. Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integr. Comput.-Aided Eng. 17(2), 103–115 (2010)

    Google Scholar 

  14. Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integr. Comput.-Aided Eng. 17(2), 103–115 (2010)

    Google Scholar 

  15. Snášel, V., Krömer, P., Platoš, J., Abraham, A.: The Evolution of Fuzzy Classifier for Data Mining with Applications. In: Deb, K., Bhattacharya, A., Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., Gupta, S.K., Jain, A., Aggarwal, V., Branke, J., Louis, S.J., Tan, K.C. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 349–358. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Vera, V., Corchado, E., Redondo, R., Sedano, J., Garcia, A.: Applying soft computing techniques to optimize a dental milling process. Neurocomputing (submitted)

    Google Scholar 

  17. Vera, V., Garcia, A.E., Suarez, M.J., Hernando, B., Corchado, E., Sanchez, M.A., Gil, A.B., Redondo, R., Sedano, J.: A bio-inspired computational high-precision dental milling system. In: NaBIC, pp. 423–429. IEEE (2010)

    Google Scholar 

  18. Vera, V., Garcia, A.E., Suarez, M.J., Hernando, B., Redondo, R., Corchado, E., Sanchez, M.A., Gil, A.B., Sedano, J.: Optimizing a dental milling process by means of soft computing techniques. In: ISDA, pp. 1430–1435. IEEE (2010)

    Google Scholar 

  19. Zadeh, L.A.: Test-score semantics dor natural languages and meaning representation via Pruf. In: Empirical Semantics. Quantitative Semantics, vol. 1, pp. 281–349. Studienverlag Brockmeyer, Bochum (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Krömer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krömer, P. et al. (2013). Evaluation of Novel Soft Computing Methods for the Prediction of the Dental Milling Time-Error Parameter. In: Snášel, V., Abraham, A., Corchado, E. (eds) Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32922-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32922-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32921-0

  • Online ISBN: 978-3-642-32922-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics