Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Image Annotation Technique Based on a Hybrid Relevance Feedback Scheme

  • Conference paper
Knowledge Technology (KTW 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 295))

Included in the following conference series:

  • 1016 Accesses

Abstract

Nowadays, with the advent of digital imagery, the volume of digital images has been growing rapidly in different fields; so there is an increasing requirement to effective image retrieval system. Hence, we need a more efficient and effective image searching technology. In this paper, we introduce a new scheme to image annotation in two stage. First semi-supervised k-means clustering with Mahalanobis similarity measure has been used. Second, a novel hybrid relevance feedback algorithm, AHRFC is proposed to narrow the gap between low-level image feature and high-level semantic and improve the accuracy of image annotation. The AHRFC algorithm is compound of three stages: (1) The images that the user knows irrelevant to cluster, are conducted to correct cluster by a long-term RF; (2) Regarding the images that the user knows relevant to cluster, we try to estimate feature weight of the clusters to provide a multiple similarity measure using a re-weighting RF; (3) To approach the exact place of the cluster centers, a cluster center movement (CCM) RF is used. Experimental results on the Corel database and satellite database taken from the Tehran city show the effectiveness of proposed methods in improving the retrieval performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, R., Zhang, Z.: BALAS: Empirical Bayesian Learning in the Relevance Feedback for Image Retrieval. Image and Vision Computing 24(3), 211–223 (2006)

    Article  MATH  Google Scholar 

  2. Lee, J., Hwang, S., Nie, Z., Wen, J.: Query Result Clustering for Object-level Search. In: Proc. of KDD 2009, Paris, France, pp. 1205–1213 (2009)

    Google Scholar 

  3. Yip, K.Y., Cheung, D.W., Ng, M.K.: On Discovery of Extremely Low-dimensional Clusters Using Semi-supervised Projected Clustering. In: Proc. of the 21st International Conference on Data Engineering, ICDE (2005)

    Google Scholar 

  4. Dai, W., Xue, G., Yang, Q., Yu, Y.: Co-clustering Based Classification for Out-of-domain Documents. In: Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, San Jose, California, USA, pp. 210–219 (2007)

    Google Scholar 

  5. Cao, F., Liang, J., Bai, L.: A New Initialization Method for Categorical Data Clustering. Expert Systems with Applications 36(7), 10223–10228 (2009)

    Article  Google Scholar 

  6. Webb, A.R.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons, Ltd. (2002)

    Google Scholar 

  7. O-Duda, R., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. (2001)

    Google Scholar 

  8. Chen, Y., Wang, J.Z., Krovetz, R.: CLUE: Cluster-Based Retrieval of Images by Unsupervised Learning. IEEE Transaction on Image Processing 14(8), 1187–1201 (2005)

    Article  Google Scholar 

  9. Das, S., Konar, A.: Automatic image pixel clustering with an improved differential evolution. Applied Soft Computing 9, 226–236 (2009)

    Article  Google Scholar 

  10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering, a review. ACM Comput. Survay. 31(3), 264–323 (1999)

    Article  Google Scholar 

  11. Chrng, C.H., Wel, L.Y.: An Evolutionary Computation Based onGA Optimal Clustering. In: Proce of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, (2007)

    Google Scholar 

  12. Mitchell, T.M.: Machine Learning. McGraw-Hill Science Engineering Math. (1997)

    Google Scholar 

  13. Amato, A., Lecce, V.: A knowledge based approach for a fast image retrieval system. Image and Vision Computing 26, 1466–1480 (2008)

    Article  Google Scholar 

  14. Sousa, F.M., Nascimento, S., Casimiro, H., Boutov, D.: Identification of upwelling areas on sea surface temperature images using fuzzy clustering. Remote Sensing of Environment 112, 2817–2823 (2008)

    Article  Google Scholar 

  15. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Networks 16(3) (2005)

    Google Scholar 

  16. Sheng, W., Liu, X., Fairhurst, M.: A Niching Memetic Algorithm for Simultaneous Clustering and Feature Selection. IEEE Transactions on Knowledge and Data Engineering 20(7) (2008)

    Google Scholar 

  17. Kherfi, M.L., Ziou, D.: Relevance Feedback for CBIR: A New Approach Based on Probabilistic Feature Weighting With Positive and Negative Examples. IEEE Transaction on Image Processing 15(4), 1017–1030 (2006)

    Article  Google Scholar 

  18. Wang, Y., Ding, M., Zhou, C., Zhang, T.: A Hybrid Method for Relevance Feedback in Image Retrieval Using Rough Sets and Neural Networks. Interbational Jurnal of Computational Cognition 3(1) (2005)

    Google Scholar 

  19. Muneesawang, P., Guan, L.: Multimedia Database Retrieval: a Human-Centered Approach. Signals and Communication Technology. Springer (2006)

    Google Scholar 

  20. Yin, P., Bhanu, B., Chang, K., Dong, A.: Integrating Relevance Feedback Techniques for Image Retrieval Using Reinforcement Learning. IEEE Transaction on Pattern Analysis and Machine Intelligence 27(10), 1536–1551 (2005)

    Article  Google Scholar 

  21. Rui, Y., Huang, T.S., Mehrotra, S.: Content-based Image Retrieval with Relevance Feedback in MARS. In: Proc. in International Conference on Image Processing, Santa Barbara, CA, USA, vol. 2, pp. 815–818 (1997)

    Google Scholar 

  22. Liu, Y., Zhang, D., Lu, G., Ma, W.: A Survey of Content-based Image Retrieval with High-level Semantics. Pattern Recognition 40(4), 262–282 (2007)

    Article  MATH  Google Scholar 

  23. Qiu, B., Xu, C.S., Tian, Q.: Efficient Relevance Feedback Using Semi-supervised Kernel -specified K-means Clustering. In: Proc of the 18th International Conference on Pattern Recognition 03, pp. 316–319 (2006)

    Google Scholar 

  24. Zhou, X.S., Huang, T.S.: Relevance Feedback in Image Retrieval: A Comprehensive Review. Multimedia System 8(6), 536–544 (2003)

    Article  Google Scholar 

  25. Wang, J.Z., Wiederhold, J.: SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Transactions on Pattern Analysis and Machine Inteligence 23(9) (2001)

    Google Scholar 

  26. Choras, R.S.: Image Feature Extraction Techniques and Their Application for CBIR and Biometrics Systems. International Journal of Biology Engineering 1, 6–16 (2007)

    Article  Google Scholar 

  27. Broumandnia, A., Shanbehzadeh, J.: Fast Zernike Wavelet Moments for Farsi Character Recognition. Image and Vision Computing 25(5), 717–726 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Javani, M., Eftekhari Moghadam, A.M. (2012). An Image Annotation Technique Based on a Hybrid Relevance Feedback Scheme. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds) Knowledge Technology. KTW 2011. Communications in Computer and Information Science, vol 295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32826-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32826-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32825-1

  • Online ISBN: 978-3-642-32826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics