Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detection of CAN by Ensemble Classifiers Based on Ripple Down Rules

  • Conference paper
Knowledge Management and Acquisition for Intelligent Systems (PKAW 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7457))

Included in the following conference series:

Abstract

It is well known that classification models produced by the Ripple Down Rules are easier to maintain and update. They are compact and can provide an explanation of their reasoning making them easy to understand for medical practitioners. This article is devoted to an empirical investigation and comparison of several ensemble methods based on Ripple Down Rules in a novel application for the detection of cardiovascular autonomic neuropathy (CAN) from an extensive data set collected by the Diabetes Complications Screening Research Initiative at Charles Sturt University. Our experiments included essential ensemble methods, several more recent state-of-the-art techniques, and a novel consensus function based on graph partitioning. The results show that our novel application of Ripple Down Rules in ensemble classifiers for the detection of CAN achieved better performance parameters compared with the outcomes obtained previously in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  2. Bindoff, I., Kang, B.H.: Simulated Assessment of Ripple Round Rules. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 180–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bindoff, I., Kang, B.H.: Applying Multiple Classification Ripple Round Rules to a Complex Configuration Task. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 481–490. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Compton, P., Jansen, R.: Knowledge in Context: a strategy for expert system maintenance. In: Second Australian Joint Artificial Intelligence Conference, AI 1988, pp. 292–306 (1988)

    Google Scholar 

  6. Compton, P., Jansen, R.: A philosophical basis for knowledge acquisition. Knowledge Acquisition 2, 241–258 (1990)

    Article  Google Scholar 

  7. Compton, P., Peters, L., Edwards, G., Lavers, T.: Experience with Ripple-Down Rules. Knowledge-Based Systems 19(5), 356–362 (2006)

    Article  Google Scholar 

  8. Cornforth, D., Jelinek, H.: Automated classification reveals morphological factors associated with dementia. Applied Soft Computing 8, 182–190 (2007)

    Article  Google Scholar 

  9. Dazeley, R., Kang, B.: Generalising Symbolic Knowledge in Online Classification and Prediction. In: Richards, D., Kang, B.-H. (eds.) PKAW 2008. LNCS (LNAI), vol. 5465, pp. 91–108. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Dazeley, R., Park, S., Kang, B.: Online knowledge validation with prudence analysis in a document management application. Expert Systems with Applications 38, 10959–10965 (2011)

    Article  Google Scholar 

  11. Dazeley, R., Warner, P., Johnson, S., Vamplew, P.: The Ballarat Incremental Knowledge Engine. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 195–207. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Dazeley, R., Yearwood, J., Kang, B., Kelarev, A.: Consensus Clustering and Supervised Classification for Profiling Phishing Emails in Internet Commerce Security. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 235–246. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Ewing, D., Campbell, J., Clarke, B.: The natural history of diabetic autonomic neuropathy. Q. J. Med. 49, 95–100 (1980)

    Google Scholar 

  14. Ewing, D., Martyn, C., Young, R., Clarke, B.: The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 8, 491–498 (1985)

    Article  Google Scholar 

  15. Fern, X., Brodley, C.: Solving cluster ensemble problems by bipartite graph partitioning. In: 21st International Conference on Machine Learning, ICML 2004, vol. 69, pp. 36–43. ACM, New York (2004)

    Chapter  Google Scholar 

  16. Finlayson, A., Compton, P.: Incremental Knowledge Acquisition Using Generalised RDR for Soccer Simulation. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 135–149. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. 13th Internat. Conf. Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  18. Gaines, B., Compton, P.: Induction of Ripple-Down Rules applied to modeling large databases. J. Intell. Inf. Syst. 5(3), 211–228 (1995)

    Article  Google Scholar 

  19. Ho, V., Compton, P., Benatallah, B., Vayssière, J., Menzel, L., Vogler, H.: An incremental knowledge acquisition method for improving duplicate invoices detection. In: Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, pp. 1415–1418 (2009)

    Google Scholar 

  20. Huda, S., Jelinek, H., Ray, B., Stranieri, A., Yearwood, J.: Exploring novel features and decision rules to identify cardiovascular autonomic neuropathy using a hybrid of wrapper-filter based feature selection. In: Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2010, pp. 297–302 (2010)

    Google Scholar 

  21. Jelinek, H., Khandoker, A., Palaniswami, M., McDonald, S.: Heart rate variability and QT dispersion in a cohort of diabetes patients. Computing in Cardiology 37, 613–616 (2010)

    Google Scholar 

  22. Jelinek, H., Rocha, A., Carvalho, T., Goldenstein, S., Wainer, J.: Machine learning and pattern classification in identification of indigenous retinal pathology. In: Proceedings IEEE Conference Eng. Med. Biol. Soc., pp. 5951–5954 (2011)

    Google Scholar 

  23. Kang, B., Kelarev, A., Sale, A., Williams, R.: A New Model for Classifying DNA Code Inspired by Neural Networks and FSA. In: Hoffmann, A., Kang, B.-H., Richards, D., Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 187–198. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Kang, B., Yoshida, K., Motoda, H., Compton, P.: A help desk system with intelligent interface. Applied Artificial Intelligence 11(7-8), 611–631 (1997)

    Article  Google Scholar 

  25. Kang, B., Compton, P.: Multiple Classification Ripple Down Rules. In: Third Japanese Knowledge Acquisition for Knowledge-Based Systems Workshop (1994)

    Google Scholar 

  26. Kang, B., Gambetta, W., Compton, P.: Verification and validation with ripple-down rules. International Journal of Human-Computer Studies 44(2), 257–269 (1996)

    Article  Google Scholar 

  27. Karypis, G., Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, University of Minnesota, Department of Computer Science and Engineering, Army HPC Research Centre, Minneapolis (1998)

    Google Scholar 

  28. Kelarev, A., Kang, B., Steane, D.: Clustering Algorithms for ITS Sequence Data with Alignment Metrics. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1027–1031. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Khandoker, A., Jelinek, H., Palaniswami, M.: Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis. BioMedical Engineering OnLine 8 (2009), http://www.biomedical--engineering--online.com/content/8/1/3

  30. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Boston (1998)

    Book  MATH  Google Scholar 

  31. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: An ever evolving frontier in data mining. Journal of Machine Learning Research – Proceedings Track 10, 4–13 (2010)

    Google Scholar 

  32. Mandvikar, A., Liu, H., Motoda, H.: Compact Dual Ensembles for Active Learning. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 293–297. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. Melville, P., Mooney, R.: Creating diversity in ensembles using artificial data. Information Fusion 6, 99–111 (2005)

    Article  Google Scholar 

  34. Ng, E., Hambly, B., McLachlan, C., Matthews, S., Jelinek, H.: WEKA machine learning classification in identifying autonomic dysfunction parameters associated with ACE insertion/deletion genotypes. In: Proceedings of the IASTED International Conference Biomedical Engineering, BioMed 2012, pp. 161–166 (2012)

    Google Scholar 

  35. Richards, D.: A social software/Web 2.0 approach to collaborative knowledge engineering. Information Sciences 179(15), 2515–2523 (2009)

    Article  Google Scholar 

  36. Richards, D., Compton, P.: Taking up the situated cognition challenge with ripple down rules. International Journal of Human-Computer Studies 49(6), 895–926 (1998)

    Article  Google Scholar 

  37. Richards, D.: Two decades of Ripple Down Rules research. Knowledge Eng. Review 24(2), 159–184 (2009)

    Article  Google Scholar 

  38. Seewald, A.K., Fürnkranz, J.: An Evaluation of Grading Classifiers. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 115–124. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  39. Taylor, M., Richards, D.: Discovering Areas of Expertise from Publication Data. In: Richards, D., Kang, B.-H. (eds.) PKAW 2008. LNCS (LNAI), vol. 5465, pp. 218–230. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  40. Ting, K., Witten, I.: Stacking bagged and dagged models. In: Fourteenth International Conference on Machine Learning, pp. 367–375 (1997)

    Google Scholar 

  41. Wada, T., Horiuchi, T., Motoda, H., Washio, T.: A description length-based decision criterion for default knowledge in the ripple down rules method. Knowledge and Information Systems 3(2), 146–167 (2001)

    Article  MATH  Google Scholar 

  42. Webb, G.: Multiboosting: A technique for combining boosting and wagging. Machine Learning 40, 159–196 (2000)

    Article  Google Scholar 

  43. Wolpert, D.: The lack of a priori distinctions between learning algorithms. Neural Computation 8, 1341–1390 (1996)

    Article  Google Scholar 

  44. Wolpert, D.: Stacked generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  45. Xu, H., Hoffmann, A.: RDRCE: Combining Machine Learning and Knowledge Acquisition. In: Kang, B.-H., Richards, D. (eds.) PKAW 2010. LNCS (LNAI), vol. 6232, pp. 165–179. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  46. Yearwood, J., Webb, D., Ma, L., Vamplew, P., Ofoghi, B., Kelarev, A.: Applying clustering and ensemble clustering approaches to phishing profiling. In: Data Mining and Analytics 2009, Proc. 8th Australasian Data Mining Conference: AusDM 2009, CRPIT, vol. 101, pp. 25–34 (2009)

    Google Scholar 

  47. Yearwood, J., Kang, B., Kelarev, A.: Experimental investigation of classification algorithms for ITS dataset. In: Pacific Rim Knowledge Acquisition Workshop, PKAW 2008, Hanoi, Vietnam, December 15-16, pp. 262–272 (2008)

    Google Scholar 

  48. Yoshida, T., Wada, T., Motoda, H., Washio, T.: Adaptive Ripple Down Rules method based on minimum description length principle. Intell. Data Anal. 8(3), 239–265 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelarev, A., Dazeley, R., Stranieri, A., Yearwood, J., Jelinek, H. (2012). Detection of CAN by Ensemble Classifiers Based on Ripple Down Rules. In: Richards, D., Kang, B.H. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2012. Lecture Notes in Computer Science(), vol 7457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32541-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32541-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32540-3

  • Online ISBN: 978-3-642-32541-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics