Abstract
We present a so-called labelling method to enrich a compiler in order to turn it into a “cost annotating compiler”, that is, a compiler which can lift pieces of information on the execution cost of the object code as cost annotations on the source code. These cost annotations characterize the execution costs of code fragments of constant complexity. The first contribution of this paper is a proof methodology that extends standard simulation proofs of compiler correctness to ensure that the cost annotations on the source code are sound and precise with respect to an execution cost model of the object code.
As a second contribution, we demonstrate that our label-based instrumentation is scalable because it consists in a modular extension of the compilation chain. To that end, we report our successful experience in implementing and testing the labelling approach on top of a prototype compiler written in ocaml for (a large fragment of) the C language.
As a third and last contribution, we provide evidence for the usability of the generated cost annotations as a mean to reason on the concrete complexity of programs written in C. For this purpose, we present a Frama-C plugin that uses our cost annotating compiler to automatically infer trustworthy logic assertions about the concrete worst case execution cost of programs written in a fragment of the C language. These logic assertions are synthetic in the sense that they characterize the cost of executing the entire program, not only constant-time fragments. (These bounds may depend on the size of the input data.) We report our experimentations on some C programs, especially programs generated by a compiler for the synchronous programming language Lustre used in critical embedded software.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amadio, R.M., Ayache, N., Memarian, K., Saillard, R., Régis-Gianas, Y.: Compiler Design and Intermediate Languages. Deliverable 2.1 of [4]
Ayache, N., Amadio, R.M., Régis-Gianas, Y.: Certifying and reasoning on cost annotations of C programs. Research Report 00702665 (June 2012)
Amadio, R.M., Régis-Gianas, Y.: Certifying and Reasoning on Cost Annotations of Functional Programs. In: Peña, R., van Eekelen, M., Shkaravska, O. (eds.) FOPARA 2011. LNCS, vol. 7177, pp. 72–89. Springer, Heidelberg (2012)
Certified complexity (Project description). ICT-2007.8.0 FET Open, Grant 243881
Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti, A., Signoles, J., Yakobowski, B.: Frama-C user manual. CEA-LIST, Software Safety Laboratory, Saclay, F-91191, http://frama-c.com/
Cousot, P., Cousot, R.: Abstract Interpretation Frameworks. Jou. of Logic and Computation 2(4), 511–547 (1992)
Ferdinand, C., Heckmann, R., Le Sergent, T., Lopes, D., Martin, B., Fornari, X., Martin, F.: Combining a high-level design tool for safety-critical systems with a tool for WCET analysis of executables. In: Embedded Real Time Software (2008)
Fornari, X.: Understanding how SCADE suite KCG generates safe C code. White paper, Esterel Technologies (2010)
Larus, J.: Assemblers, linkers, and the SPIM simulator. Appendix of Computer Organization and Design: the hw/sw interface. Hennessy and Patterson (2005)
MCS 51 Microcontroller Family User’s Manual. Publication number 121517. Intel Corporation (1994)
Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
Leroy, X.: Mechanized semantics, with applications to program proof and compiler verification. In: Marktoberdorf Summer School (2009)
Necula, G., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language and Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)
Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans. Embedded Comput. Syst. 7(3) (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ayache, N., Amadio, R.M., Régis-Gianas, Y. (2012). Certifying and Reasoning on Cost Annotations in C Programs. In: Stoelinga, M., Pinger, R. (eds) Formal Methods for Industrial Critical Systems. FMICS 2012. Lecture Notes in Computer Science, vol 7437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32469-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-32469-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32468-0
Online ISBN: 978-3-642-32469-7
eBook Packages: Computer ScienceComputer Science (R0)