Abstract
The Girth-Chromatic number theorem is a theorem from graph theory, stating that graphs with arbitrarily large girth and chromatic number exist. We formalize a probabilistic proof of this theorem in the Isabelle/HOL theorem prover, closely following a standard textbook proof and use this to explore the use of the probabilistic method in a theorem prover.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued special functions. JAR 44, 175–205 (2010)
Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley (2000)
Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in COQ. Science of Computer Programming 74(8), 568–589 (2009)
Ballarin, C.: Interpretation of Locales in Isabelle: Theories and Proof Contexts. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 31–43. Springer, Heidelberg (2006)
Bauer, G., Wenzel, M.T.: Calculational Reasoning Revisited (An Isabelle/Isar Experience). In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 75–90. Springer, Heidelberg (2001)
van Benthem, J.F.A.K., ter Meulen, A.G.: Generalized quantifiers in natural language. de Gruyter (1985)
Bollobás, B.: Random Graphs. Academic Press (1985)
Bourbaki, N.: General Topology (Part I). Addison-Wesley (1966)
Butler, R.W., Sjogren, J.A.: A PVS graph theory library. Tech. rep., NASA Langley (1998)
Chou, C.-T.: A Formal Theory of Undirected Graphs in Higher-Order Logic. In: Melham, T.F., Camilleri, J. (eds.) HUG 1994. LNCS, vol. 859, pp. 144–157. Springer, Heidelberg (1994)
Diestel, R.: Graph Theory, GTM, 4th edn., vol. 173. Springer (2010)
Endou, N., Narita, K., Shidama, Y.: The lebesgue monotone convergence theorem. Formalized Mathematics 16(2), 171–179 (2008)
Erdős, P., Rényi, A.: Asymmetric graphs. Acta Mathematica Hungarica 14, 295–315 (1963)
Erdős, P.: Graph theory and probability. Canad. J. Math. 11(11), 34–38 (1959)
Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen. 6, 290–297 (1959)
Gonthier, G.: A computer-checked proof of the Four Colour Theorem (2005)
Hölzl, J., Heller, A.: Three Chapters of Measure Theory in Isabelle/HOL. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 135–151. Springer, Heidelberg (2011)
Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis, University of Cambridge (2002)
Hurd, J.: Verification of the Miller-Rabin probabilistic primality test. JLAP 50(1-2), 3–21 (2003)
Lee, G., Rudnicki, P.: Alternative graph structures. Formalized Mathematics 13(2), 235–252 (2005), Formal Proof Development
Lester, D.R.: Topology in PVS: continuous mathematics with applications. In: Proc. AFM, pp. 11–20. ACM (2007)
Lovász, L.: On chromatic number of finite set-systems. Acta Mathematica Hungarica 19, 59–67 (1968)
Mhamdi, T., Hasan, O., Tahar, S.: On the Formalization of the Lebesgue Integration Theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 387–402. Springer, Heidelberg (2010)
Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: Tame Graphs. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21–35. Springer, Heidelberg (2006)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002), http://isabelle.in.tum.de/dist/Isabelle2011-1/doc/tutorial.pdf
Noschinski, L.: A probabilistic proof of the girth-chromatic number theorem. In: The Archive of Formal Proofs (February 2012), http://afp.sf.net/entries/Girth_Chromatic.shtml , Formal Proof Development
Rado, R.: Universal graphs and universal functions. Acta Arithmetica 9, 331–340 (1964)
Rudnicki, P., Stewart, L.: The Mycielskian of a graph. Formalized Mathematics 19(1), 27–34 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Noschinski, L. (2012). Proof Pearl: A Probabilistic Proof for the Girth-Chromatic Number Theorem. In: Beringer, L., Felty, A. (eds) Interactive Theorem Proving. ITP 2012. Lecture Notes in Computer Science, vol 7406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32347-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-32347-8_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32346-1
Online ISBN: 978-3-642-32347-8
eBook Packages: Computer ScienceComputer Science (R0)