Nothing Special   »   [go: up one dir, main page]

Skip to main content

Proof Pearl: A Probabilistic Proof for the Girth-Chromatic Number Theorem

  • Conference paper
Interactive Theorem Proving (ITP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7406))

Included in the following conference series:

Abstract

The Girth-Chromatic number theorem is a theorem from graph theory, stating that graphs with arbitrarily large girth and chromatic number exist. We formalize a probabilistic proof of this theorem in the Isabelle/HOL theorem prover, closely following a standard textbook proof and use this to explore the use of the probabilistic method in a theorem prover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued special functions. JAR 44, 175–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley (2000)

    Google Scholar 

  3. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in COQ. Science of Computer Programming 74(8), 568–589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballarin, C.: Interpretation of Locales in Isabelle: Theories and Proof Contexts. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 31–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bauer, G., Wenzel, M.T.: Calculational Reasoning Revisited (An Isabelle/Isar Experience). In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 75–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. van Benthem, J.F.A.K., ter Meulen, A.G.: Generalized quantifiers in natural language. de Gruyter (1985)

    Google Scholar 

  7. Bollobás, B.: Random Graphs. Academic Press (1985)

    Google Scholar 

  8. Bourbaki, N.: General Topology (Part I). Addison-Wesley (1966)

    Google Scholar 

  9. Butler, R.W., Sjogren, J.A.: A PVS graph theory library. Tech. rep., NASA Langley (1998)

    Google Scholar 

  10. Chou, C.-T.: A Formal Theory of Undirected Graphs in Higher-Order Logic. In: Melham, T.F., Camilleri, J. (eds.) HUG 1994. LNCS, vol. 859, pp. 144–157. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  11. Diestel, R.: Graph Theory, GTM, 4th edn., vol. 173. Springer (2010)

    Google Scholar 

  12. Endou, N., Narita, K., Shidama, Y.: The lebesgue monotone convergence theorem. Formalized Mathematics 16(2), 171–179 (2008)

    Article  Google Scholar 

  13. Erdős, P., Rényi, A.: Asymmetric graphs. Acta Mathematica Hungarica 14, 295–315 (1963)

    Article  Google Scholar 

  14. Erdős, P.: Graph theory and probability. Canad. J. Math. 11(11), 34–38 (1959)

    Article  MathSciNet  Google Scholar 

  15. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen. 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  16. Gonthier, G.: A computer-checked proof of the Four Colour Theorem (2005)

    Google Scholar 

  17. Hölzl, J., Heller, A.: Three Chapters of Measure Theory in Isabelle/HOL. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 135–151. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis, University of Cambridge (2002)

    Google Scholar 

  19. Hurd, J.: Verification of the Miller-Rabin probabilistic primality test. JLAP 50(1-2), 3–21 (2003)

    Google Scholar 

  20. Lee, G., Rudnicki, P.: Alternative graph structures. Formalized Mathematics 13(2), 235–252 (2005), Formal Proof Development

    Google Scholar 

  21. Lester, D.R.: Topology in PVS: continuous mathematics with applications. In: Proc. AFM, pp. 11–20. ACM (2007)

    Google Scholar 

  22. Lovász, L.: On chromatic number of finite set-systems. Acta Mathematica Hungarica 19, 59–67 (1968)

    Article  MATH  Google Scholar 

  23. Mhamdi, T., Hasan, O., Tahar, S.: On the Formalization of the Lebesgue Integration Theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 387–402. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: Tame Graphs. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21–35. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002), http://isabelle.in.tum.de/dist/Isabelle2011-1/doc/tutorial.pdf

    MATH  Google Scholar 

  26. Noschinski, L.: A probabilistic proof of the girth-chromatic number theorem. In: The Archive of Formal Proofs (February 2012), http://afp.sf.net/entries/Girth_Chromatic.shtml , Formal Proof Development

  27. Rado, R.: Universal graphs and universal functions. Acta Arithmetica 9, 331–340 (1964)

    MathSciNet  MATH  Google Scholar 

  28. Rudnicki, P., Stewart, L.: The Mycielskian of a graph. Formalized Mathematics 19(1), 27–34 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noschinski, L. (2012). Proof Pearl: A Probabilistic Proof for the Girth-Chromatic Number Theorem. In: Beringer, L., Felty, A. (eds) Interactive Theorem Proving. ITP 2012. Lecture Notes in Computer Science, vol 7406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32347-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32347-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32346-1

  • Online ISBN: 978-3-642-32347-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics