Abstract
The goal of Multi-Party Computation (MPC) is to perform an arbitrary computation in a distributed, private, and fault-tolerant way. For this purpose, a fixed set of n parties runs a protocol that tolerates an adversary corrupting a subset of the parties, preserving certain security guarantees like correctness, secrecy, robustness, and fairness. Corruptions can be either passive or active: A passively corrupted party follows the protocol correctly, but the adversary learns the entire internal state of this party. An actively corrupted party is completely controlled by the adversary, and may deviate arbitrarily from the protocol. A mixed adversary may at the same time corrupt some parties actively and some additional parties passively.
In this work, we consider the statistical setting with mixed adversaries and study the exact consequences of active and passive corruptions on secrecy, correctness, robustness, and fairness separately (i.e., hybrid security). Clearly, the number of passive corruptions affects the thresholds for secrecy, while the number of active corruptions affects all thresholds. It turns out that in the statistical setting, the number of passive corruptions in particular also affects the threshold for correctness, i.e., in all protocols there are (tolerated) adversaries for which a single additional passive corruption is sufficient to break correctness. This is in contrast to both the perfect and the computational setting, where such an influence cannot be observed. Apparently, this effect arises from the use of information-theoretic signatures, which are part of most (if not all) statistical protocols.
The full version of this paper is available at the Cryptology ePrint Archive: http://eprint.iacr.org/2012/272. This work was partially supported by the Zurich Information Security Center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beaver, D.: Multiparty Protocols Tolerating Half Faulty Processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, Heidelberg (1990)
Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)
Beerliová-Trubíniová, Z., Fitzi, M., Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: Perfect Security in a Unified Corruption Model. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 231–250. Springer, Heidelberg (2008)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10. ACM (1988)
Beerliová-Trubíniová, Z., Hirt, M.: Efficient Multi-party Computation with Dispute Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC 1988, pp. 11–19. ACM (1988)
Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Multiparty Computations Secure against an Adaptive Adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)
Chaum, D.: The Spymasters Double-Agent Problem: Multiparty Computations Secure Unconditionally from Minorities and Cryptograhically from Majorities. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 591–602. Springer, Heidelberg (1990)
Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. Journal of the ACM 40(1), 17–47 (1993)
Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-Threshold Broadcast and Detectable Multi-party Computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003)
Fitzi, M., Hirt, M., Maurer, U.: Trading Correctness for Privacy in Unconditional Multi-party Computation (Extended Abstract). In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 121–136. Springer, Heidelberg (1998)
Fitzi, M., Hirt, M., Maurer, U.M.: General Adversaries in Unconditional Multi-party Computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999)
Fitzi, M., Holenstein, T., Wullschleger, J.: Multi-party Computation with Hybrid Security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 419–438. Springer, Heidelberg (2004)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229. ACM (1987)
Hirt, M., Lucas, C., Maurer, U., Raub, D.: Graceful Degradation in Multi-Party Computation (Extended Abstract). In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 163–180. Springer, Heidelberg (2011)
Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party computation. In: PODC 1997, pp. 25–34. ACM (1997)
Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and Computational Security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18. Springer, Heidelberg (2008)
Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On Combining Privacy with Guaranteed Output Delivery in Secure Multiparty Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)
Katz, J.: On achieving the ”best of both worlds” in secure multiparty computation. In: STOC 2007, pp. 11–20. ACM (2007)
Lucas, C., Raub, D., Maurer, U.: Hybrid-secure MPC: Trading information-theoretic robustness for computational privacy. In: PODC 2010, pp. 219–228. ACM (2010)
Maurer, U.M.: Secure Multi-party Computation Made Simple. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer, Heidelberg (2003)
Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement for any Number of Faulty Processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC 1989, pp. 73–85. ACM (1989)
Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hirt, M., Lucas, C., Maurer, U., Raub, D. (2012). Passive Corruption in Statistical Multi-Party Computation. In: Smith, A. (eds) Information Theoretic Security. ICITS 2012. Lecture Notes in Computer Science, vol 7412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32284-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-32284-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32283-9
Online ISBN: 978-3-642-32284-6
eBook Packages: Computer ScienceComputer Science (R0)