Nothing Special   »   [go: up one dir, main page]

Skip to main content

Density-Based Method for Clustering and Visualization of Complex Data

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2012)

Abstract

In this paper the topic of clustering and visualization of the data structure is discussed. Authors review currently found in literature algorithmic solutions ([3], [5]) that deal with clustering large volumes of data, focusing on their disadvantages and problems. What is more the authors introduce and analyze a density-based algorithm OPTICS (Ordering Points To Identify the Clustering Structure) as a method for clustering a real-world dataset about the functioning of transceivers of a cellular phone operator located in Poland. This algorithm is also presented as an relatively easy way for visualization of the data’s inner structure, relationships and hierarchies. The whole analysis is performed as a comparison to the well-known and described DBSCAN algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to identify the clustering structure. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Philadelphia, USA (1999)

    Google Scholar 

  2. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, USA (1996)

    Google Scholar 

  3. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3) (1999)

    Google Scholar 

  4. Böm, C., Noll, R., Plant, C., Wackersreuther, B.: Density-based Clustering using Graphics Processors. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, USA (2009)

    Google Scholar 

  5. Berry, M.W., Browne, M.: Lecture notes in Data Mining. World Scientific Publishing Co. Pte. Ltd., Singapur (2009)

    Google Scholar 

  6. Tufféry, S.: Data Mining and Statistics for Decision Making. Wiley & Sons Ltd., UK (2011)

    Google Scholar 

  7. Han, J., Kamber, M., Pei, J.: Data Mining. Concepts and Techniques. Elsevier Inc., USA (2012)

    MATH  Google Scholar 

  8. Wakulicz-Deja, A., Nowak-Brzezińska, A., Xięski, T.: Efficiency of Complex Data Clustering. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 636–641. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Xięski, T.: Clustering complex data. In: Wakulicz-Deja, A. (ed.) Decision Support Systems. Institute of Computer Science of the University of Silesia (2011) (in Polish)

    Google Scholar 

  10. Nowak-Brzezińska, A., Jach, T., Xięski, T.: Choice of the clustering algorithm and the efficiency of finding documents. Studia informatica, Scientific Papers of Silesian Technical University 31(2A(89)), 147–162 (2010) (in Polish)

    Google Scholar 

  11. Xu, R., Wunsch, D.: Clustering. IEEE Press Series on Computational Intelligence, USA (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xięski, T., Nowak-Brzezińska, A., Wakulicz-Deja, A. (2012). Density-Based Method for Clustering and Visualization of Complex Data. In: Yao, J., et al. Rough Sets and Current Trends in Computing. RSCTC 2012. Lecture Notes in Computer Science(), vol 7413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32115-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32115-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32114-6

  • Online ISBN: 978-3-642-32115-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics