Nothing Special   »   [go: up one dir, main page]

Skip to main content

Knowledge Discovery Using Associative Classification for Heart Disease Prediction

  • Conference paper
Intelligent Informatics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 182))

  • 1925 Accesses

Abstract

Associate classification is a scientific study that is being used by knowledge discovery and decision support system which integrates association rule discovery methods and classification to a model for prediction. An important advantage of these classification systems is that, using association rule mining they are able to examine several features at a time. Associative classifiers are especially fit to applications where the model may assist the domain experts in their decisions. Cardiovascular deceases are the number one cause of death globally. An estimated 17.3 million people died from CVD in 2008, representing 30% of all global deaths. India is at risk of more deaths due to CHD. Cardiovascular disease is becoming an increasingly important cause of death in Andhra Pradesh. Hence a decision support system is proposed for predicting heart disease of a patient. In this paper we propose a new Associate classification algorithm for predicting heart disease for Andhra Pradesh population. Experiments show that the accuracy of the resulting rule set is better when compared to existing systems. This approach is expected to help physicians to make accurate decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tan, P.N., Steinbach, Kumar, V.: Introduction to Data Mining. Pearson Education (2006)

    Google Scholar 

  2. Written, I., Frank, K.: Data Mining: Practical machine Learning tools and techniques with java implementations. Morgan Kaufmann, San Francisco (2010)

    Google Scholar 

  3. Pazzani, M., Mani, S., et al.: Beyond concise and colorful learning intelligible rules. In: Proceedings of the KDD, pp. 235–238. AAAI Press, Menlo Park (1923)

    Google Scholar 

  4. Gupta, R.: Recent trends in coronary heart disease epidemiology in India. Indian Heart Journal, B4–B18 (2008)

    Google Scholar 

  5. Shilou, S., Bamidic, P.D., Maglareras, N., Papas, C.: Mining association rules from clinical data bases an intelligent diagnosis process in health care. Study of Health Technology, pp. 1399–1403 (2001)

    Google Scholar 

  6. Vyas, R.J., et al.: Associative classifiers for predictive analysis: Comparative performance Study. In: 2nd UCSIM European Symposium on Computer Modeling and Simulations (2008)

    Google Scholar 

  7. Thabtah, F.C., Peng, Y.: MMAC: A new multi class, multi-label associative classification approach. In: ICDM, pp. 217–214 (2004)

    Google Scholar 

  8. WHO Report on non communicable diseases (September, 2011)

    Google Scholar 

  9. Patil, S.B., et al.: Extraction of significant patterns from heart disease warehouses for heart attack prediction. IJCSNS 9(2) (February 2009)

    Google Scholar 

  10. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: KDD 1998, NY, pp. 80–86 (1998)

    Google Scholar 

  11. Agarwal, Srikant, R.: Fast algorithm from mining association rule. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (2003)

    Google Scholar 

  12. Li, W., Han, J., Pei, J.: CMAR: Accurate classification based on multiple class association rules. In: Proceedings of the ICDM, pp. 363–366 (2001)

    Google Scholar 

  13. Han, J., Pei, J., Yin, Y.: Mining frequent item sets without candidate generation. In: Proceedings of ACM SIGMOD, pp. 1–12 (2000)

    Google Scholar 

  14. Yin, Y., Han, J.: CPAR: Classification Based on predictive association rules. In: SDM (2003)

    Google Scholar 

  15. Quinlan, J.R., Cameran, R.M.: FOIL: A Midterm Report. In: Brazdil, P.B. (ed.) ECML 1993, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

    Google Scholar 

  16. Chan, G., Lanyu, H.L.: A New approach to classification based on association rule mining. Decision Support System, 674–689 (2006)

    Google Scholar 

  17. Jabbar, M.A., Chandra, P., Deekshatulu, B.L.: Cluster Based association rule mining for heart attack Prediction. JATIT 32(2) (October 2011)

    Google Scholar 

  18. Patil, S.B., et al.: Intelligent and effective heart attack prediction system using data mining and artificial neural network. Europian Journal of Scientific Research 31(4) (2009)

    Google Scholar 

  19. Ordonez, C.: Improving Heart Disease Prediction using constrained association Rule. Seminar Presentation, Tokyo (2004)

    Google Scholar 

  20. Ambarasi, M., et al.: Enhanced Prediction of Heart Disease with Feature subset selection using Genetic Algorithm. IJESI 2(10) (2010)

    Google Scholar 

  21. http://www.sgi.com/tech/mlc/db

  22. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, Newyork (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jabbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jabbar, M.A., Deekshatulu, B.L., Chandra, P. (2013). Knowledge Discovery Using Associative Classification for Heart Disease Prediction. In: Abraham, A., Thampi, S. (eds) Intelligent Informatics. Advances in Intelligent Systems and Computing, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32063-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32063-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32062-0

  • Online ISBN: 978-3-642-32063-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics