Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Rule-Based Approach for Extraction of Link-Context from Anchor-Text Structure

  • Conference paper
Intelligent Informatics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 182))

Abstract

Most of the researchers have widely explored the use of link-context to determine the theme of target web-page. Link-context has been applied in areas such as search engines, focused crawlers, and automatic classification. Therefore, extraction of precise link-context may be considered as an important parameter for extracting more relevant information from the web-page. In this paper, we have proposed a rule-based approach for the extraction of the link-context from anchor-text (AT) structure using bottom-up simple LR (SLR) parser. Here, we have considered only named entity (NE) anchor-text. In order to validate our proposed approach, we have considered a sample of 4 ATs. The results have shown that, the proposed LCEA has extracted 100% actual link-context of each considered AT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jing, T., Ping, T., Zuo, W.: Deriving Link Context through Dependency Analysis. In: IEEE International Conference on Education Technology and Computer (2009)

    Google Scholar 

  2. Java, A., et al.: Using a Natural Language Understanding System to Generate Semantic Web Content. International Journal on Semantic Web and Information Systems 3(4) (2007)

    Google Scholar 

  3. Chauhan, N., Sharma, A.K.: Analyzing Anchor- Links to Extract Semantic Inference of a Web page. In: 10th IEEE International Conference on Information Technology (2007)

    Google Scholar 

  4. Xu, Q., Zuo, W.: Extracting Precise Link Context Using NLP Parsing Technique. In: Proceeding of the IEEE/WIC/ACM International Conference on Web Intelligence, WI 2004 (2004)

    Google Scholar 

  5. Pant, G.: Deriving Link-context from HTML Tag Tree. In: Proceedings of 8th SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (2003)

    Google Scholar 

  6. Henzinger, M., et al.: Link Analysis in Web Information Retrieval. IEEE Data Engineering Bulletin 23(3), 3–8 (2000)

    Google Scholar 

  7. Aho, A.V., Ullman, J.D.: Principals of Compiler Design, pp. 197–214. Narosa Publishing House (25th reprint 2003)

    Google Scholar 

  8. Fensal, D., Van Harmelen, Horrocks, I., McGuinness, Patel-Scheider: OIL: An ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems 16(2), 38–45 (2001)

    Article  Google Scholar 

  9. Klein, M.: Tutorial: The Semantic Web- XML, RDF, and Relatives. IEEE Intelligent Systems 16(2), 26–28 (2001)

    Article  Google Scholar 

  10. Hebeler, J., Fisher, M., Blace, R., Lopez, A.P.: Semantic Web Programming, pp. 63–139. Wiley Publication (2009)

    Google Scholar 

  11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  12. Aggarwal, C.C., AI-Garawi, F., Yu, P.S.: Intelligent crawling on the World Wide Web with arbitrary predicates. In: WWW 10, Hong Kong (May 2001)

    Google Scholar 

  13. Chauhan, N., Sharma, A.K.: A framework to derive web page context from hyperlink structure. International Journal of Information and Communication Technology 1(3/4), 329–346

    Google Scholar 

  14. Attardi, G., Gulli, A., Sebastini, F.: Automatic Web page categorization by link and context analysis. In: Proceeding of THAI 1999, 1st European Symposium on Telematics, Hypermedia and Artificial Intelligence (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, S., Kumar, N., Singh, M., De, A. (2013). A Rule-Based Approach for Extraction of Link-Context from Anchor-Text Structure. In: Abraham, A., Thampi, S. (eds) Intelligent Informatics. Advances in Intelligent Systems and Computing, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32063-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32063-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32062-0

  • Online ISBN: 978-3-642-32063-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics