Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards an Intelligent Decision Making Support

  • Conference paper
Intelligent Informatics

Abstract

This paper presents an intelligent framework that combines case-based reasoning (CBR), fuzzy logic and particle swarm optimization (PSO) to build an intelligent decision support model. CBR is a useful technique to support decision making (DM) by learning from past experiences. It solves a new problem by retrieving, reusing, and adapting past solutions to old problems that are closely similar to the current problem. In this paper, we combine fuzzy logic with case-based reasoning to identify useful cases that can support the DM. At the beginning, a fuzzy CBR based on both problems and actors’ similarities is advanced to measure usefulness of past cases. Then, we rely on a meta-heuristic optimization technique i.e. Particle Swarm Optimization to adjust optimally the parameters of the inputs and outputs fuzzy membership functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Simon, H.: The New science of management decision. Prentice Hall, Englewood Cliffs (1977)

    Google Scholar 

  2. Zaraté, P.: Des Systèmes Interactifs d’Aide la Décision Aux Systèmes Coopératifs d’Aide la Décision: Contributions conceptuelles et fonctionnelles. HDR dissertation, INP Toulouse (2005)

    Google Scholar 

  3. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates, New Jersey (1989)

    Google Scholar 

  4. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and system approaches. AI Communications 7, 39–59 (1994)

    Google Scholar 

  5. Main, J., Dillon, T.S., Khosla, R.: Use of fuzzy feature vectors and neural vectors for case retrieval in case based systems. In: Biennial Conference of the North American Fuzzy Information Processing Society, NAFIPS 1996, pp. 438–443. IEEE, New York (1996)

    Chapter  Google Scholar 

  6. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 4(2), 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  7. ShengZhou, Y., Lai, L.Y.: Optimal design for fuzzy controllers by genetic algorithms. IEEE Transactions on Industry Applications 36(1), 93–97 (2000)

    Article  Google Scholar 

  8. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence: Advances and Applications. Information Science Reference (an imprint of IGI Global), United States of America (2010)

    Book  Google Scholar 

  9. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, California (1993)

    Google Scholar 

  10. Jeng, B.C., Liang, T.P.: Fuzzy indexing and retrieval in case-based systems. Expert Systems with Applications 8(1), 135–142 (1995)

    Article  Google Scholar 

  11. Eberhart, R.C., Kennedy, J.: New optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  12. Yisu, J., Knowles, J., Hongmei, L., Yizeng, L., Kell, D.B.: The Landscape Adaptive Particle Swarm Optimizer. Applied Soft Computing 8, 295–304 (2008)

    Article  Google Scholar 

  13. Clerc, M.: The Swarm and the Queen: Towards A Deterministic and Adaptive Particle Swarm Optimization. In: Proceedings of the Congress of Evolutionary Computation, Washington, DC, pp. 1951–1957 (1999)

    Google Scholar 

  14. Carlisle, A., Dozier, G.: An Off-The-Shelf PSO. In: Proceedings of the Particle Swarm Optimization Workshop, Indianapolis, Ind., USA, pp. 1–6 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrine Ben Yahia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben Yahia, N., Bellamine, N., Ben Ghezala, H. (2013). Towards an Intelligent Decision Making Support. In: Abraham, A., Thampi, S. (eds) Intelligent Informatics. Advances in Intelligent Systems and Computing, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32063-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32063-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32062-0

  • Online ISBN: 978-3-642-32063-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics