Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Adaptive Signal Segmentation Approach Based on Hiaguchi’s Fractal Dimension

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 304))

Included in the following conference series:

Abstract

In many non-stationary signal processing applications such as electroencephalogram (EEG), it is better to divide the signal into smaller segments during which the signals are pseudo-stationary. Therefore, they can be considered stationary and analyzed separately. In this paper a new segmentation method based on discrete wavelet transform (DWT) and Hiaguchi’s fractal dimension (FD) is proposed. Although the Hiaguchi’s algorithm is the most accurate algorithms to obtain an FD for EEG signals, the algorithm is very sensitive to the inherent existing noise. To overcome the problem, we use the DWT to reduce the artifacts such as electrooculogram (EOG) and electromyogram (EMG) which often occur in higher frequency bands. In order to evaluate the performance of the proposed method, it is applied to a synthetic and real EEG signals. The simulation results show the Hiaguchi’s FD with DWT can accurately detect the signal segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azami, H., Sanei, S., Mohammadi, K.: A Novel Signal Segmentation Method Based on Standard Deviation and Variable Threshold. Journal of Computer Applications 34(2), 27–34 (2011)

    Google Scholar 

  2. Azami, H., Bozorgtabar, B., Shiroie, M.: Automatic signal segmentation using the fractal dimension and weighted moving average filter. Journal of Electrical & Computer science 11(6), 8–15 (2011)

    Google Scholar 

  3. Agarwal, R., Gotman, J.: Adaptive Segmentation of Electroencephalographic Data Using a Nonlinear Energy Operator. In: IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 4, pp. 199–202 (1999)

    Google Scholar 

  4. Hassanpour, H., Mesbah, M., Boashash, B.: Time-Frequency Based Newborn EEG Seizure Detection Using Low and High Frequency Signatures. Physiological Measurement 25, 935–944 (2004)

    Article  Google Scholar 

  5. Hassanpour, H., Mesbah, M., Boashash, B.: Time-Frequency Feature Extraction of Newborn EEG Seizure Using SVD-based Techniques. EURASIP Journal on Applied Signal Processing 16, 2544–2554 (2004)

    Google Scholar 

  6. Kosar, K., Lhotská, L., Krajca, V.: Classification of Long-Term EEG Recordings. In: Barreiro, J.M., Martín-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA 2004. LNCS, vol. 3337, pp. 322–332. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Kirlangic, M.E., Perez, D., Kudryavtseva, S., Griessbach, G., Henning, G., Ivanova, G.: Fractal Dimension as a Feature for Adaptive Electroencephalogram Segmentation in Epilepsy. In: IEEE International EMBS Conference, vol. 2, pp. 1573–1576 (2001)

    Google Scholar 

  8. Azami, H., Mohammadi, K., Bozorgtabar, B.: An Improved Signal Segmentation Using Moving Average and Savitzky-Golay Filter. Journal of Signal and Information Processing 3(1), 39–44 (2012)

    Article  Google Scholar 

  9. Azami, H., Mohammadi, K., Hassanpour, H.: An Improved Signal Segmentation Method Using Genetic Algorithm. Journal of Computer Applications 29(8), 5–9 (2011)

    Article  Google Scholar 

  10. Hassanpour, H., Shahiri, M.: Adaptive Segmentation Using Wavelet Transform. In: International Conference on Electrical Engineering, pp. 1–5 (April 2007)

    Google Scholar 

  11. Gao, J., Sultan, H., Hu, J., Tung, W.W.: Denoising Nonlinear Time Series by Adaptive Filtering and Wavelet Shrinkage: a Comparison. IEEE Signal Processing Letters 17(3), 237–240 (2010)

    Article  Google Scholar 

  12. Hsu, W.Y., Lin, C.C., Ju, M.S., Sun, Y.N.: Wavelet-Based Fractal Features with Active Segment Selection: Application to Single-Trial EEG Data. Elsevier Journal of Neuroscience Methods 163(1), 145–160 (2007)

    Article  Google Scholar 

  13. Asaduzzaman, K., Reaz, M.B.I., Mohd-Yasin, F., Sim, K.S., Hussain, M.S.: A Study on Discrete Wavelet-Based Noise Removal from EEG Signals. Journal of Advances in Experimental Medicine and Biology 680, 593–599 (2010)

    Article  Google Scholar 

  14. Estrada, E., Nazeran, H., Sierra, G., Ebrahimi, F., Setarehdan, S.K.: Wavelet-Based EEG Denoising for Automatic Sleep Stage Classification. In: International Conference on Electrical Communications and Computers (CONIELECOMP), pp. 295–298 (2011)

    Google Scholar 

  15. Geetha, G., Geethalakshmi, S.N.: EEG De-noising Using Sure Thresholding Based on Wavelet Transforms. International Journal of Computer Applications 24(6) (2011)

    Google Scholar 

  16. Easwaramoorthy, D., Uthayakumar, R.: Analysis of Biomedical EEG Signals Using Wavelet Transforms and Multifractal Analysis. In: IEEE International Conference on Communication Control and Computing Technologies (ICCCCT), pp. 545–549 (2010)

    Google Scholar 

  17. Tao, Y., Lam, E.C.M., Tang, Y.Y.: Feature Extraction Using Wavelet and Fractal. Elsevier Journal of Pattern Recognition 22(3-4), 271–287 (2001)

    MATH  Google Scholar 

  18. Rajagopalan, S., Aller, J.M., Restrepo, J.A., Habetler, T.G., Harley, R.G.: Analytic-Wavelet-Ridge-Based Detection of Dynamic Eccentricity in Brushless Direct Current (BLDC) Motors Functioning Under Dynamic Operating Conditions. IEEE Transaction on Industrial Electronics 54(3), 1410–1419 (2007)

    Article  Google Scholar 

  19. Gunasekaran, S., Revathy, K.: Fractal Dimension Analysis of Audio Signals for Indian Musical Instrument Recognition. In: International Conference on Audio, Language and Image Processing (ICALIP), pp. 257–261 (2008)

    Google Scholar 

  20. Acharya, U.R., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-Linear Analysis of EEG Signals at Various Sleep Stages. Computer Methods and Programs in Biomedicine 80(1), 37–45 (2005)

    Article  Google Scholar 

  21. Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B.: A Comparison of Fractal Dimension Algorithms Using Synthetic and Experimental Data. In: IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 3, pp. 199–202 (1999)

    Google Scholar 

  22. Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B.: A Comparison of Waveform Fractal Dimension Algorithms. IEEE Transaction on Circuits and Systems 48(2), 177–183 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azami, H., Khosravi, A., Malekzadeh, M., Sanei, S. (2012). A New Adaptive Signal Segmentation Approach Based on Hiaguchi’s Fractal Dimension. In: Huang, DS., Gupta, P., Zhang, X., Premaratne, P. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2012. Communications in Computer and Information Science, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31837-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31837-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31836-8

  • Online ISBN: 978-3-642-31837-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics