Abstract
In many non-stationary signal processing applications such as electroencephalogram (EEG), it is better to divide the signal into smaller segments during which the signals are pseudo-stationary. Therefore, they can be considered stationary and analyzed separately. In this paper a new segmentation method based on discrete wavelet transform (DWT) and Hiaguchi’s fractal dimension (FD) is proposed. Although the Hiaguchi’s algorithm is the most accurate algorithms to obtain an FD for EEG signals, the algorithm is very sensitive to the inherent existing noise. To overcome the problem, we use the DWT to reduce the artifacts such as electrooculogram (EOG) and electromyogram (EMG) which often occur in higher frequency bands. In order to evaluate the performance of the proposed method, it is applied to a synthetic and real EEG signals. The simulation results show the Hiaguchi’s FD with DWT can accurately detect the signal segments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azami, H., Sanei, S., Mohammadi, K.: A Novel Signal Segmentation Method Based on Standard Deviation and Variable Threshold. Journal of Computer Applications 34(2), 27–34 (2011)
Azami, H., Bozorgtabar, B., Shiroie, M.: Automatic signal segmentation using the fractal dimension and weighted moving average filter. Journal of Electrical & Computer science 11(6), 8–15 (2011)
Agarwal, R., Gotman, J.: Adaptive Segmentation of Electroencephalographic Data Using a Nonlinear Energy Operator. In: IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 4, pp. 199–202 (1999)
Hassanpour, H., Mesbah, M., Boashash, B.: Time-Frequency Based Newborn EEG Seizure Detection Using Low and High Frequency Signatures. Physiological Measurement 25, 935–944 (2004)
Hassanpour, H., Mesbah, M., Boashash, B.: Time-Frequency Feature Extraction of Newborn EEG Seizure Using SVD-based Techniques. EURASIP Journal on Applied Signal Processing 16, 2544–2554 (2004)
Kosar, K., Lhotská, L., Krajca, V.: Classification of Long-Term EEG Recordings. In: Barreiro, J.M., Martín-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA 2004. LNCS, vol. 3337, pp. 322–332. Springer, Heidelberg (2004)
Kirlangic, M.E., Perez, D., Kudryavtseva, S., Griessbach, G., Henning, G., Ivanova, G.: Fractal Dimension as a Feature for Adaptive Electroencephalogram Segmentation in Epilepsy. In: IEEE International EMBS Conference, vol. 2, pp. 1573–1576 (2001)
Azami, H., Mohammadi, K., Bozorgtabar, B.: An Improved Signal Segmentation Using Moving Average and Savitzky-Golay Filter. Journal of Signal and Information Processing 3(1), 39–44 (2012)
Azami, H., Mohammadi, K., Hassanpour, H.: An Improved Signal Segmentation Method Using Genetic Algorithm. Journal of Computer Applications 29(8), 5–9 (2011)
Hassanpour, H., Shahiri, M.: Adaptive Segmentation Using Wavelet Transform. In: International Conference on Electrical Engineering, pp. 1–5 (April 2007)
Gao, J., Sultan, H., Hu, J., Tung, W.W.: Denoising Nonlinear Time Series by Adaptive Filtering and Wavelet Shrinkage: a Comparison. IEEE Signal Processing Letters 17(3), 237–240 (2010)
Hsu, W.Y., Lin, C.C., Ju, M.S., Sun, Y.N.: Wavelet-Based Fractal Features with Active Segment Selection: Application to Single-Trial EEG Data. Elsevier Journal of Neuroscience Methods 163(1), 145–160 (2007)
Asaduzzaman, K., Reaz, M.B.I., Mohd-Yasin, F., Sim, K.S., Hussain, M.S.: A Study on Discrete Wavelet-Based Noise Removal from EEG Signals. Journal of Advances in Experimental Medicine and Biology 680, 593–599 (2010)
Estrada, E., Nazeran, H., Sierra, G., Ebrahimi, F., Setarehdan, S.K.: Wavelet-Based EEG Denoising for Automatic Sleep Stage Classification. In: International Conference on Electrical Communications and Computers (CONIELECOMP), pp. 295–298 (2011)
Geetha, G., Geethalakshmi, S.N.: EEG De-noising Using Sure Thresholding Based on Wavelet Transforms. International Journal of Computer Applications 24(6) (2011)
Easwaramoorthy, D., Uthayakumar, R.: Analysis of Biomedical EEG Signals Using Wavelet Transforms and Multifractal Analysis. In: IEEE International Conference on Communication Control and Computing Technologies (ICCCCT), pp. 545–549 (2010)
Tao, Y., Lam, E.C.M., Tang, Y.Y.: Feature Extraction Using Wavelet and Fractal. Elsevier Journal of Pattern Recognition 22(3-4), 271–287 (2001)
Rajagopalan, S., Aller, J.M., Restrepo, J.A., Habetler, T.G., Harley, R.G.: Analytic-Wavelet-Ridge-Based Detection of Dynamic Eccentricity in Brushless Direct Current (BLDC) Motors Functioning Under Dynamic Operating Conditions. IEEE Transaction on Industrial Electronics 54(3), 1410–1419 (2007)
Gunasekaran, S., Revathy, K.: Fractal Dimension Analysis of Audio Signals for Indian Musical Instrument Recognition. In: International Conference on Audio, Language and Image Processing (ICALIP), pp. 257–261 (2008)
Acharya, U.R., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-Linear Analysis of EEG Signals at Various Sleep Stages. Computer Methods and Programs in Biomedicine 80(1), 37–45 (2005)
Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B.: A Comparison of Fractal Dimension Algorithms Using Synthetic and Experimental Data. In: IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 3, pp. 199–202 (1999)
Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B.: A Comparison of Waveform Fractal Dimension Algorithms. IEEE Transaction on Circuits and Systems 48(2), 177–183 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Azami, H., Khosravi, A., Malekzadeh, M., Sanei, S. (2012). A New Adaptive Signal Segmentation Approach Based on Hiaguchi’s Fractal Dimension. In: Huang, DS., Gupta, P., Zhang, X., Premaratne, P. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2012. Communications in Computer and Information Science, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31837-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-31837-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31836-8
Online ISBN: 978-3-642-31837-5
eBook Packages: Computer ScienceComputer Science (R0)