Nothing Special   »   [go: up one dir, main page]

Skip to main content

Locating Tandem Repeats in Weighted Biological Sequences

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 304))

Included in the following conference series:

  • 2292 Accesses

Abstract

A weighted biological sequence is a string in which a set of characters may appear at each position with respective probabilities of occurrence. We attempt to locate all the tandem repeats in a weighted sequence. By introducing the idea of equivalence classes in weighted sequences, we identify the tandem repeats of every possible length using an iterative partitioning technique, and present the O(n 2) time algorithm.

Corresponding author: Qing Guo, College of Computer Science, Zhejiang University, Hangzhou, China. Tel: 0086-571-88939701. Fax: 0086-571-88867185.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apostolico, A., Prepamta, F.P.: Optimal Off-line Detection of Repetitions in a string. Theoretical Computer Science 22, 297–315 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christodoulakis, M., Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis, A., Tsichlas, K.: Computation of Repetitions and Regularities on Biological Weighted Sequences. Journal of Computational Biology 13(6), 1214–1231 (2006)

    Article  MathSciNet  Google Scholar 

  3. Crochemore, M.: An Optimal Algorithm for Computing the Repetitions in a Word. Information Processing Letter 12(5), 244–250 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Franêk, F., Smyth, W.F., Tang, Y.: Computing All Repeats Using Suffix Arrays. Journal of Automata, Languages and Combinatorics 8(4), 579–591 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)

    Google Scholar 

  6. Iliopoulos, C.S., Makris, C., Panagis, Y., Perdikuri, K., Theodoridis, E., Tsakalidis, A.: Efficient Algorithms for Handling Molecular Weighted Sequences. IFIP Theoretical Computer Science 147, 265–278 (2004)

    Google Scholar 

  7. Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis, A.: Computing the Repetitions in a Weighted Sequence. In: Proc. of the 8th Prague Stringology Conference (PSC 2003), pp. 91–98 (2003)

    Google Scholar 

  8. Main, M.G., Lorentz, R.J.: An O(nlngn) Algorithm for Finding All Repetitions in a String. Journal of Algorithms 5, 422–432 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches. SIAM Journal on Computing 22(5), 935–948 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ohno, S.: Repeats of Base Oligomers as the Primordial Coding Sequences of the Primeval Earth and Their Vestiges in Modern Genes. Journal of Molecular Evolution 20, 313–321 (1984)

    Article  Google Scholar 

  11. Stoye, J., Gusfield, D.: Simple and Flexible Detection of Contiguous Repeats Using a Suffix Tree. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 140–152. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Zhang, H., Guo, Q., Iliopoulos, C.S.: Loose and Strict Repeats in Weighted Sequences. Protein and Peptide Letters 17(9), 1136–1142 (2010)

    Article  Google Scholar 

  13. The Human Genome Project(HGP), http://www.nbgri.nih.gov/HGP/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, H., Guo, Q., Iliopoulos, C.S. (2012). Locating Tandem Repeats in Weighted Biological Sequences. In: Huang, DS., Gupta, P., Zhang, X., Premaratne, P. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2012. Communications in Computer and Information Science, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31837-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31837-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31836-8

  • Online ISBN: 978-3-642-31837-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics