Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Types of Compositions of Intuitionistic Fuzzy Relations in Decision Making Problems

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

We propose the use of intuitionistic fuzzy sets as a tool for reasoning under imperfect facts and imprecise knowledge.

We suggest applications of diverse types of composition of intuitionistic fuzzy relations to this problem. In particular, we will use composition of fuzzy relation in the sense of Goguen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer (1999)

    Google Scholar 

  3. Burillo, P., Bustince, H.: Intuitionistic Fuzzy Relations. Effect of Atanassov’s Operators on the Properties of the Intuitionistic Fuzzy Relations. Mathware and Soft Computing 2, 117–148 (1995)

    MathSciNet  MATH  Google Scholar 

  4. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems 117, 209–213 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deschrijver, G., Kerre, E.E.: On the relationship beetwen some extensions of fuzzy set theory. Fuzzy Sets and Systems 133, 227–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deschrijver, G., Cornelis, C., Kerre, E.E.: On the Representation of Intuitonistic Fuzzy t-Norms and t-Conorms. IEEE Transactions on Fuzzy Syst. 12, 45–61 (2004)

    Article  Google Scholar 

  7. Drygaś, P., Pękala, B.: Properties of decomposable operations on same extension of the fuzzy set theory. In: Atanassov, K.T., Hryniewicz, O., Kacprzyk, J., Krawczak, M., Nahorski, Z., Szmidt, E., Zadrony, S. (eds.) Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Foundations, vol. I, pp. 105–118. EXIT, Warszawa (2008)

    Google Scholar 

  8. Drygaś, P., Pękala, B.: Decision making problem on intuitionistic fuzzy relations (submitted)

    Google Scholar 

  9. Goguen, A.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Acad. Publ., Dordrecht (2000)

    MATH  Google Scholar 

  11. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drygaś, P. (2012). New Types of Compositions of Intuitionistic Fuzzy Relations in Decision Making Problems. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31715-6_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31714-9

  • Online ISBN: 978-3-642-31715-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics