Abstract
In this paper we generalize f-generated fuzzy implications introduced by Yager. Further we generalize I f and \(I^g_N\) implications introduced by Smutná and RU-implications, studied by De Baets and Fodor, as well as (U,N)-implications. We study basic properties of these newly proposed fuzzy implications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baczyński, M., Jayaram, B.: Fuzzy implications. STUDFUZZ, vol. 231. Springer, Berlin (2008)
Baczyński, M., Jayaram, B.: (S,N)- and R-implications: A state-of-the-art survey. Fuzzy Sets and Systems 159(14), 1836–1859 (2008)
Baczyński, M., Jayaram, B.: QL-implications: Some properties and intersections. Fuzzy Sets and Systems 161(2), 158–188 (2010)
De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Computing 3, 89–100 (1999)
Biba, V., Hliněná, D.: Generated fuzzy implications and known classes of implications. Acta Univ. M. Belii, Ser. Math. 16, 25–34 (2010)
Biba, V., Hliněná, D., Kalina, M., Král’, P.: Implicators generated by strictly decreasing functions and known classes of implicators. Information Sciences (2011) (submitted, manuscript)
Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers (1994)
Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5, 411–422 (1997)
Hájek, P.: Mathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
Jayaram, B.: Yager’s new class of implications jf and some classical tautologies. Information Sciences 177(3), 930–946 (2007)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer (2000)
Mas, M., Monserrat, J., Torrens, M.: E Trillas. A survey on fuzzy implication functions. IEEE T. Fuzzy Systems 15(6), 1107–1121 (2007)
Massanet, S., Torrens, J.: The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets and Systems 168(1), 47–69 (2011)
Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)
Ouyang, Y.: On fuzzy implications determined by aggregation operators. Information Sciences 193, 153–162 (2012)
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)
Smutná, D.: On many valued conjunctions and implications. Journal of Electrical Engineering 50, 8–10 (1999)
Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Information Sciences 167(1-4), 193–216 (2004)
Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80, 111–120 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hliněná, D., Kalina, M., Král’, P. (2012). Generated Implications Revisited. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-31715-6_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31714-9
Online ISBN: 978-3-642-31715-6
eBook Packages: Computer ScienceComputer Science (R0)