Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generated Implications Revisited

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

In this paper we generalize f-generated fuzzy implications introduced by Yager. Further we generalize I f and \(I^g_N\) implications introduced by Smutná and RU-implications, studied by De Baets and Fodor, as well as (U,N)-implications. We study basic properties of these newly proposed fuzzy implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baczyński, M., Jayaram, B.: Fuzzy implications. STUDFUZZ, vol. 231. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Baczyński, M., Jayaram, B.: (S,N)- and R-implications: A state-of-the-art survey. Fuzzy Sets and Systems 159(14), 1836–1859 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baczyński, M., Jayaram, B.: QL-implications: Some properties and intersections. Fuzzy Sets and Systems 161(2), 158–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Computing 3, 89–100 (1999)

    Article  Google Scholar 

  5. Biba, V., Hliněná, D.: Generated fuzzy implications and known classes of implications. Acta Univ. M. Belii, Ser. Math. 16, 25–34 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Biba, V., Hliněná, D., Kalina, M., Král’, P.: Implicators generated by strictly decreasing functions and known classes of implicators. Information Sciences (2011) (submitted, manuscript)

    Google Scholar 

  7. Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers (1994)

    Google Scholar 

  8. Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5, 411–422 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hájek, P.: Mathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Google Scholar 

  10. Jayaram, B.: Yager’s new class of implications jf and some classical tautologies. Information Sciences 177(3), 930–946 (2007)

    Article  MathSciNet  Google Scholar 

  11. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer (2000)

    Google Scholar 

  12. Mas, M., Monserrat, J., Torrens, M.: E Trillas. A survey on fuzzy implication functions. IEEE T. Fuzzy Systems 15(6), 1107–1121 (2007)

    Article  Google Scholar 

  13. Massanet, S., Torrens, J.: The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets and Systems 168(1), 47–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)

    Book  MATH  Google Scholar 

  15. Ouyang, Y.: On fuzzy implications determined by aggregation operators. Information Sciences 193, 153–162 (2012)

    Article  Google Scholar 

  16. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)

    MATH  Google Scholar 

  17. Smutná, D.: On many valued conjunctions and implications. Journal of Electrical Engineering 50, 8–10 (1999)

    Google Scholar 

  18. Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Information Sciences 167(1-4), 193–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80, 111–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hliněná, D., Kalina, M., Král’, P. (2012). Generated Implications Revisited. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31715-6_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31714-9

  • Online ISBN: 978-3-642-31715-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics