Nothing Special   »   [go: up one dir, main page]

Skip to main content

Decreasing Uncertainty When Interpreting Profiles through the Traffic Lights Panel

  • Conference paper
Advances in Computational Intelligence (IPMU 2012)

Abstract

This paper describes Traffic Lights Panel (TLP) as a useful interpretation-oriented tool for clustering results, suitable for helping the domain experts to induce a conceptualization of the resulting profiles. Till now, the TLP is manually derived from the clustering results, but it has been well accepted by the domain experts of several real applications as a very helpful contribution to understand the classes’ meaning and improve reliable decision-making. Here, a proposal to automatically construction of TLP is presented trying to mimic the real process that the analyst performs. Two criteria based on different central trend statistics of the variables inside a class are introduced, tested with a real case study in Neurorehabilitation field and compared. Finally, uncertainty concerning TLP is analyzed; the annotated TLP (aTLP) is proposed to visualize uncertainty associated to the decisions derived from TLP, thus enhancing robustness of TLP as a supporting tool in decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lezak, M.D.: Neuropsychological Assessment, 4th edn. Oxford University Press, New York (2004)

    Google Scholar 

  2. Gibert, K., et al.: Response to TBI-neurorehabilitation through an AI& Stats hybrid KDD methodology. Medical Archives 62(3), 132–135 (2008)

    Google Scholar 

  3. Fayyad, U.: Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge (1996)

    Google Scholar 

  4. Gibert, K., et al.: Data Mining for Environmental Systems. In: Environmental Modelling, Software and Decision Support. State of the art and New Perspectives. IDEA Series, vol. (3), pp. 205–228. Elsevier (2008)

    Google Scholar 

  5. Gibert, K., Sànchez-Marrè, M.: Outcomes from the iEMSs Data Mining in the Environmental Sciences Workshop Series. Environmental Modelling and Software (26), 983–985 (2011)

    Google Scholar 

  6. Gibert, K., Nonell, R., Velarde, J.M., Colillas, M.M.: Knowledge Discovery with clustering: impact of metrics and reporting phase by using KLASS. Neural Network World (04), 319–326 (2005)

    Google Scholar 

  7. Gibert, K., Rodríguez-Silva, G., Rodríguez-Roda, I.: Knowledge Discovery with Clustering based on rules by States: A water treatment application. Environmental Modelling and Software (25), 712–723 (2010)

    Google Scholar 

  8. Lindsey, J.C., Jacobson, D.L., Li, H., Houseman, E.A., Aldrovandi, G.M., Mulligan, K.: Using Cluster Heat Maps to Investigate Relationships Between Body Composition and Laboratory Measurements in HIV-Infected & HIV-Uninfected Children & Young Adults. J. of Acquired Immune Deficiency Syndromes 59(3), 325–338 (1999)

    Article  Google Scholar 

  9. Siponen, M., Vesanto, J., Simula, O., Vasara, P.: An approach to automated interpretation of SOM. Advances in Self-Organising Maps, 89–94 (2001)

    Google Scholar 

  10. Yan, G., Li, Z.: Using cluster similarity to detect natural cluster hierarchies. In: Proceedings of Fourth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 291–295 (2007)

    Google Scholar 

  11. Barnard, K., Duygulu, P., Forsyth, D.: Clustering art. In: Computer Vision and Pattern Recognition, vol. 2, pp. 434–441 (2001)

    Google Scholar 

  12. Trauwaert, T., Rouseew, P., Kauffman, L.: Some silhouette-based graphics for clustering interpretation. Belgian J. Operations Research, Statistics and Computer Science 29(3), 35–55

    Google Scholar 

  13. Rohling, M.: Effectiveness of Cognitive Rehabilitation Following Acquired Brain Injury: A Meta-Analytic Re-Examination of Cicerone et al.’s (2000, 2005) Systematic Reviews. Neuropsychology 23(1), 20–39 (2009)

    Article  Google Scholar 

  14. ECRI, Cognitive Rehabilitation Therapy for Traumatic Brain Injury: What We Know and Don’t Know about Its Efficacy, EDITORIAL NOTE 10/11/11: IOM.s New Report on Brain Injury Treatments Draws Conclusions Similar to ECRI Institute’s Earlier Findings (2011)

    Google Scholar 

  15. Tormos (ed.): Desarrollo de Herramientas para evaluar el resultado de las tecnologías aplicadas al proceso rehabilitador. Estudio a partir de dos modelos concretos: Lesión Medular y Daño Cerebral Adquirido. Madrid: Plan de Calidad para el Sistema Nacional de Salud. Ministerio de Sanidad y Consumo. Agència d’avaluació de tecnologia i recerca mèdiques de Catalunya. Informes de evaluación de tecnologías sanitarias AATRM, n 2006/12 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibert, K., Conti, D., Sànchez-Marrè, M. (2012). Decreasing Uncertainty When Interpreting Profiles through the Traffic Lights Panel. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31715-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31714-9

  • Online ISBN: 978-3-642-31715-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics