Abstract
This is a talk on minicomplexity, namely on the complexity of two-way finite automata. We start with a smooth introduction to its basic concepts, which also brings together several seemingly detached, old theorems. We then record recent advances, both in the theory itself and in its relation to Turing machine complexity. Finally, we illustrate a proof technique, which we call hardness propagation by certificates. The entire talk follows, extends, and advocates the Sakoda-Sipser framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barnes, B.H.: A two-way automaton with fewer states than any equivalent one-way automaton. IEEE Transactions on Computers C-20(4), 474–475 (1971)
Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata. Report 304, Institute of Computer Science, Polish Academy of Sciences, Warsaw (1977)
Birget, J.C.: Two-way automata and length-preserving homomorphisms. Mathematical Systems Theory 29, 191–226 (1996)
Geffert, V.: An alternating hierarchy for finite automata. Theoretical Computer Science (to appear)
Geffert, V., Guillon, B., Pighizzini, G.: Two-Way Automata Making Choices Only at the Endmarkers. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 264–276. Springer, Heidelberg (2012)
Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoretical Computer Science 295, 189–203 (2003)
Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Information and Computation 205(8), 1173–1187 (2007)
Hromkovič, J., Schnitger, G.: Nondeterminism Versus Determinism for Two-Way Finite Automata: Generalizations of Sipser’s Separation. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–451. Springer, Heidelberg (2003)
Kapoutsis, C.A.: Nondeterminism is essential in small two-way finite automata with few reversals. Information and Computation (to appear)
Kapoutsis, C.A.: Removing Bidirectionality from Nondeterministic Finite Automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)
Kapoutsis, C.A.: Algorithms and lower bounds in finite automata size complexity. Phd thesis, Massachusetts Institute of Technology (June 2006)
Kapoutsis, C.A.: Small Sweeping 2NFAs Are Not Closed Under Complement. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 144–156. Springer, Heidelberg (2006)
Kapoutsis, C.A.: Deterministic moles cannot solve liveness. Journal of Automata, Languages and Combinatorics 12(1-2), 215–235 (2007)
Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)
Kapoutsis, C.A.: Two-Way Automata versus Logarithmic Space. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 359–372. Springer, Heidelberg (2011)
Kapoutsis, C.A., Královič, R., Mömke, T.: On the Size Complexity of Rotating and Sweeping Automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 455–466. Springer, Heidelberg (2008)
Kapoutsis, C.A., Lefebvre, N.: Analogs of Fagin’s Theorem for small nondeterministic finite automata. In: Proceedings of DLT (to appear, 2012)
Kapoutsis, C.A., Pighizzini, G.: Reversal hierarchies for small 2DFAs (submitted)
Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly versus NL. In: Proceedings of CSR, pp. 222–233 (2012)
Kozen, D.C.: Automata and computability. Springer (1997)
Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of FOCS, pp. 188–191 (1971)
Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers 20(10), 1211–1214 (1971)
Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)
Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC, pp. 275–286 (1978)
Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences 4, 177–192 (1970)
Seiferas, J.I.: Untitled (October 1973), manuscript
Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM Journal of Research and Development 3, 198–200 (1959)
Sipser, M.: Halting space-bounded computations. Theoretical Computer Science 10, 335–338 (1980)
Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21(2), 195–202 (1980)
Sipser, M.: Introduction to the theory of computation. Thomson Course Technology, 2nd edn. (2006)
Szepietowski, A.: If deterministic and nondeterministic space complexities are equal for loglogn then they are also equal for logn. In: Proceedings of STACS, pp. 251–255 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kapoutsis, C.A. (2012). Minicomplexity. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-31623-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31622-7
Online ISBN: 978-3-642-31623-4
eBook Packages: Computer ScienceComputer Science (R0)