Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7386))

Included in the following conference series:

Abstract

This is a talk on minicomplexity, namely on the complexity of two-way finite automata. We start with a smooth introduction to its basic concepts, which also brings together several seemingly detached, old theorems. We then record recent advances, both in the theory itself and in its relation to Turing machine complexity. Finally, we illustrate a proof technique, which we call hardness propagation by certificates. The entire talk follows, extends, and advocates the Sakoda-Sipser framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnes, B.H.: A two-way automaton with fewer states than any equivalent one-way automaton. IEEE Transactions on Computers C-20(4), 474–475 (1971)

    Article  Google Scholar 

  2. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata. Report 304, Institute of Computer Science, Polish Academy of Sciences, Warsaw (1977)

    Google Scholar 

  3. Birget, J.C.: Two-way automata and length-preserving homomorphisms. Mathematical Systems Theory 29, 191–226 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Geffert, V.: An alternating hierarchy for finite automata. Theoretical Computer Science (to appear)

    Google Scholar 

  5. Geffert, V., Guillon, B., Pighizzini, G.: Two-Way Automata Making Choices Only at the Endmarkers. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 264–276. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoretical Computer Science 295, 189–203 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Information and Computation 205(8), 1173–1187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hromkovič, J., Schnitger, G.: Nondeterminism Versus Determinism for Two-Way Finite Automata: Generalizations of Sipser’s Separation. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–451. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Kapoutsis, C.A.: Nondeterminism is essential in small two-way finite automata with few reversals. Information and Computation (to appear)

    Google Scholar 

  10. Kapoutsis, C.A.: Removing Bidirectionality from Nondeterministic Finite Automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kapoutsis, C.A.: Algorithms and lower bounds in finite automata size complexity. Phd thesis, Massachusetts Institute of Technology (June 2006)

    Google Scholar 

  12. Kapoutsis, C.A.: Small Sweeping 2NFAs Are Not Closed Under Complement. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 144–156. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kapoutsis, C.A.: Deterministic moles cannot solve liveness. Journal of Automata, Languages and Combinatorics 12(1-2), 215–235 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Kapoutsis, C.A.: Size Complexity of Two-Way Finite Automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Kapoutsis, C.A.: Two-Way Automata versus Logarithmic Space. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 359–372. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Kapoutsis, C.A., Královič, R., Mömke, T.: On the Size Complexity of Rotating and Sweeping Automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 455–466. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kapoutsis, C.A., Lefebvre, N.: Analogs of Fagin’s Theorem for small nondeterministic finite automata. In: Proceedings of DLT (to appear, 2012)

    Google Scholar 

  18. Kapoutsis, C.A., Pighizzini, G.: Reversal hierarchies for small 2DFAs (submitted)

    Google Scholar 

  19. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly versus NL. In: Proceedings of CSR, pp. 222–233 (2012)

    Google Scholar 

  20. Kozen, D.C.: Automata and computability. Springer (1997)

    Google Scholar 

  21. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proceedings of FOCS, pp. 188–191 (1971)

    Google Scholar 

  22. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers 20(10), 1211–1214 (1971)

    Article  MATH  Google Scholar 

  23. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  24. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC, pp. 275–286 (1978)

    Google Scholar 

  25. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences 4, 177–192 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Seiferas, J.I.: Untitled (October 1973), manuscript

    Google Scholar 

  27. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM Journal of Research and Development 3, 198–200 (1959)

    Article  MathSciNet  Google Scholar 

  28. Sipser, M.: Halting space-bounded computations. Theoretical Computer Science 10, 335–338 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21(2), 195–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sipser, M.: Introduction to the theory of computation. Thomson Course Technology, 2nd edn. (2006)

    Google Scholar 

  31. Szepietowski, A.: If deterministic and nondeterministic space complexities are equal for loglogn then they are also equal for logn. In: Proceedings of STACS, pp. 251–255 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kapoutsis, C.A. (2012). Minicomplexity. In: Kutrib, M., Moreira, N., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2012. Lecture Notes in Computer Science, vol 7386. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31623-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31623-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31622-7

  • Online ISBN: 978-3-642-31623-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics