Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Thirty Year Old Conjecture about Promise Problems

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

Even, Selman, and Yacobi [ESY84, SY82] formulated a conjecture that in current terminology asserts that there do not exist disjoint NP-pairs all of whose separators are NP-hard viaTuring reductions. In this paper we consider a variant of this conjecture—there do not exist disjoint NP-pairs all of whose separators are NP-hard via bounded-truth-table reductions. We provide evidence for this conjecture. We also observe that if the original conjecture holds, then some of the known probabilistic public-key cryptosystems are not NP-hard to crack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 284–293. ACM, New York (1997)

    Chapter  Google Scholar 

  2. Agrawal, M.: Pseudo-random generators and structure of complete degrees. In: 17th Annual IEEE Conference on Computational Complexity, pp. 139–145 (2002)

    Google Scholar 

  3. Adleman, L., Manders, K.: Reducibility, randomness, and intractability. In: Proc. 9th ACM Symp. Theory of Computing, pp. 151–163 (1977)

    Google Scholar 

  4. Ambos-Spies, K., Bentzien, L.: Separating NP-completeness under strong hypotheses. Journal of Computer and System Sciences 61(3), 335–361 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambos-Spies, K., Fleischhack, H., Huwig, H.: Diagonalizations over polynomial time computable sets. Theoretical Computer Science 51, 177–204 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambos-Spies, K., Neis, H., Terwijn, A.: Genericity and measure for exponential time. Theoretical Computer Science 168(1), 3–19 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambos-Spies, K., Terwijn, A., Zheng, X.: Resource bounded randomness and weakly complete problems. Theoretical Computer Science 172(1), 195–207 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buhrman, H., Hescott, B., Homer, S., Torenvliet, L.: Non-uniform reductions. Theory of Computing Systems 47(2), 317–241 (2010)

    Google Scholar 

  9. Balcazar, J., Mayordomo, E.: A note on genericty and bi-immunity. In: Proceedings of the Tenth Annual IEEE Conference on Computational Complexity, pp. 193–196 (1995)

    Google Scholar 

  10. Even, S., Selman, A., Yacobi, Y.: The complexity of promise problems with applications to public-key cryptography. Information and Control 61(2), 159–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fortnow, L.: Personal Communication

    Google Scholar 

  12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)

    Google Scholar 

  13. Gu, X., Hitchcock, J., Pavan, A.: Collapsing and separating completeness notions under average-case and worst-case hypotheses. In: STACS 2010. LIPIcs, vol. 5, pp. 429–440. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  14. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comp. System Sci. 28, 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldreich, O.: On Promise Problems: A Survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Shimon Even Festchrift. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Grollmann, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM Journal on Computing 17(2), 309–355 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glaßer, C., Selman, A., Sengupta, S., Zhang, L.: Disjoint NP-pairs. SIAM J. Comput. 33(6), 1369–1416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glaßer, C., Selman, A., Zhang, L.: Canonical disjoint NP-pairs of propositional proof systems. Theoretical Computer Science 370(1), 60–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hitchcock, J., Pavan, A.: Comparing reductions to NP-complete sets. Information and Computation 205(5), 694–706 (2007); In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 465–476. Springer, Heidelberg (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lutz, J.H., Mayordomo, E.: Cook versus Karp-Levin: Separating completeness notions if NP is not small. Theoretical Computer Science 164, 141–163 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyên, P.Q., Stern, J.: Cryptanalysis of the Ajtai-Dwork Cryptosystem. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Heidelberg (1998)

    Google Scholar 

  22. Pavan, A., Selman, A.: Separation of NP-completeness notions. SIAM Journal on Computing 31(3), 906–918 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pavan, A., Selman, A.: Bi-immunity separates strong NP-completeness notions. Information and Computation 188, 116–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pudlak, P.: On reducibility and symmetry of disjoint NP-pairs. In: Electronic Colloquium on Computational Complexity, technical reports (2001)

    Google Scholar 

  25. Razborov, A.: On provably disjoint NP pairs. Technical Report 94-006, ECCC (1994)

    Google Scholar 

  26. Schoenfield, J.: Degrees of models. Journal of Symbolic Logic 25, 233–237 (1960)

    Article  MathSciNet  Google Scholar 

  27. Selman, A., Yacobi, Y.: The Complexity of Promise Problems. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 502–509. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hughes, A., Pavan, A., Russell, N., Selman, A. (2012). A Thirty Year Old Conjecture about Promise Problems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics