Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deciding First Order Properties of Matroids

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Included in the following conference series:

Abstract

Frick and Grohe [J. ACM 48 (2006), 1184–1206] introduced a notion of graph classes with locally bounded tree-width and established that every first order property can be decided in almost linear time in such a graph class. Here, we introduce an analogous notion for matroids (locally bounded branch-width) and show the existence of a fixed parameter algorithm for first order properties in classes of regular matroids with locally bounded branch-width. To obtain this result, we show that the problem of deciding the existence of a circuit of length at most k containing two given elements is fixed parameter tractable for regular matroids.

A full version of this contribution is available as arXiv:1108.5457.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding: a new method for finding simple paths, cycles and other small subgraphs within large graphs. In: Proc. STOC 1994, pp. 326–335. ACM (1994)

    Google Scholar 

  2. Courcelle, B.: The monadic second-order logic of graph I. Recognizable sets of finite graphs. Inform. and Comput. 85, 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World Scientific (1997)

    Google Scholar 

  4. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. LICS 2007, pp. 270–279. IEEE Computer Society Press (2007)

    Google Scholar 

  5. Downey, R.G., Fellows, M.R., Vardy, A., Whittle, G.: The parametrized complexity of some fundamental problems in coding theory. SIAM J. Comput. 29, 545–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dvořák, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: Proc. FOCS 2010, pp. 133–142 (2010)

    Google Scholar 

  7. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algor. Appli. 3, 1–27 (1999)

    MathSciNet  Google Scholar 

  8. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48, 1184–1206 (2001)

    Article  MathSciNet  Google Scholar 

  10. Gaifman, H.: On local and non-local properties. In: Proc. of Herbrand Symposium, Logic Colloquium 1981. North-Holland, Amsterdam (1982)

    Google Scholar 

  11. Hliněný, P.: On Matroid Properties Definable in the MSO Logic. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 470–479. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Hliněný, P.: A parametrized algorithm for matroid branch-width. SIAM J. Computing 35(2), 259–277 (2005)

    Article  MATH  Google Scholar 

  13. Hliněný, P.: Branch-width, parse trees and monadic second-order logic for matroids. J. Combin. Theory Ser. B 96, 325–351 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hliněný, P.: On Matroid Representability and Minor Problems. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 505–516. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Hliněný, P., Oum, S.: Finding branch-decomposition and rank-decomposition. SIAM J. Computing 38, 1012–1032 (2008)

    Article  MATH  Google Scholar 

  16. Hliněný, P., Whittle, G.: Matroid tree-width. European J. Combin. 27, 1117–1128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hliněný, P., Whittle, G.: Addendum to matroid tree-width. European J. Combin. 30, 1036–1044 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawarabayashi, K., Thorup, M.: Minimum k-way cut of bounded size is fixed-parameter tractable. In: Proc. FOCS 2011, pp. 160–169. IEEE (2011)

    Google Scholar 

  19. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory, Ser. B 96, 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oxley, J.G.: Matroid theory. Oxford University Press (1992)

    Google Scholar 

  21. Peleg, D.: Distance-dependent distributed directories. Info. Computa. 103, 270–298 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-decompositions. J. Combin. Theory Ser. B 52, 153–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seymour, P.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305–359 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Seymour, P.: Recognizing graphic matroids. Combinatorica 1, 75–78 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Truemper, K.: A decomposition theory for matroids V. Testing of matrix total unimodularity. J. Combin. Theory Ser. B 49, 241–281 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Truemper, K.: Matroid decomposition. Academic Press (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavenčiak, T., Král, D., Oum, Si. (2012). Deciding First Order Properties of Matroids. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics