Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparing CUDA, OpenCL and OpenGL Implementations of the Cardiac Monodomain Equations

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Abstract

Computer simulations of cardiac electrophysiology are a helpful tool in the study of bioelectric activity of the heart. The cardiac monodomain model comprises a nonlinear system of partial differential equations and its numerical solution represents a very intensive computational task due to the required fine spatial and temporal resolution. Recent studies have shown that the use of GPU as a general purpose processor can greatly improve the performance of simulations. The aim of this work is to study the performance of different GPU programming interfaces for the solution of the cardiac monodomain equations. Three different GPU implementations are compared, OpenGL, NVIDIA CUDA and OpenCL, to a CPU multicore implementation that uses OpenMP. The OpenGL approach showed to be the fastest with a speedup of 446 (compared to the multicore implementation) for the solution of the nonlinear system of ordinary differential equations (ODEs) associated to the solution of the cardiac model, whereas CUDA was the fastest for the numerical solution of the parabolic partial differential equation with a speedup of 8. Although OpenCL provides code portability between different accelerators, the OpenCL version was slower for the solution of the parabolic equation and as fast as CUDA for the solution of the system of ODEs, showing to be a portable way of programming scientific applications but not as efficient as CUDA when running on Nvidia GPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amorim, R.M., Haase, G., Liebmann, M., dos Santos, R.W.: Comparing CUDA and OpenGL implementations for a Jacobi iteration. In: International Conference on High Performance Computing & Simulation (HPCS 2009). pp. 22–32 (2009)

    Google Scholar 

  2. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

    Article  Google Scholar 

  3. Sato, D., Xie, Y., Weiss, J.N., Qu, Z., Garfinkel, A., Sanderson, A.R.: Acceleration of cardiac tissue simulation with graphic processing units. Med. Biol. Eng. Comput. 47, 1011–1015 (2009)

    Article  Google Scholar 

  4. Plank, G., Liebmann, M., Santos, R.W., Vigmond, E.J., Haase, G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54(4), 585–596 (2007)

    Article  Google Scholar 

  5. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart. Springer (2006)

    Google Scholar 

  6. Maclachlan, M.C., Sundnes, J., Spiteri, R.J.: A comparison of non-standard solvers for odes describing cellular reactions in the heart. Comput. Methods Biomech. Biomed. Engin. 10, 317–326 (2007)

    Article  Google Scholar 

  7. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA. Tech. rep., NVidia Corporation (2008)

    Google Scholar 

  8. Santos, R.W., Plank, G., Bauer, S., Vigmond, E.J.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51(11), 1960–1968 (2004)

    Article  Google Scholar 

  9. Rocha, B.M., Campos, F.O., Amorim, R.M., Plank, G., dos Santos, R.W., Liebmann, M., Haase, G.: Accelerating cardiac excitation spread simulations using graphics processing units. Concurrency and Computation: Practice and Experience (2010)

    Google Scholar 

  10. Weber, R., Gothandaraman, A., Hinde, R.J., Peterson, G.D.: Comparing Hardware Accelerators in Scientific Applications: A Case Study. IEEE Transactions on Parallel and Distributed Systems 22, 58–68 (2011)

    Article  Google Scholar 

  11. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sachetto Oliveira, R. et al. (2012). Comparing CUDA, OpenCL and OpenGL Implementations of the Cardiac Monodomain Equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31500-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31499-5

  • Online ISBN: 978-3-642-31500-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics