Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving the Performance of Unit Critiquing

  • Conference paper
User Modeling, Adaptation, and Personalization (UMAP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7379))

Abstract

Conversational recommender systems allow users to learn and adapt their preferences according to concrete examples. Critiquing systems support such a conversational interaction style. Especially unit critiques offer a low cost feedback strategy for users in terms of the needed cognitive effort. In this paper we present an extension of the experience-based unit critiquing algorithm. The development of our new approach, which we call nearest neighbor compatibility critiquing, was aimed at increasing the efficiency of unit critiquing. We combine our new approach with existing critiquing strategies to ensemble-based variations and present the results of an empirical study that aimed at comparing the recommendation efficiency (in terms of the number of critiquing cycles) of ensemble-based solutions with individual critiquing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McCarthy, K., McGinty, L., Smyth, B.: Dynamic Critiquing: An Analysis of Cognitive Load. In: Proceedings of the 16th Irish Conference on Artificial Intelligence and Cognitive Science, pp. 19–28 (2005)

    Google Scholar 

  2. Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: Evaluating compound critiquing recommenders: a real-user study. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 114–123 (2007)

    Google Scholar 

  3. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental Critiquing. In: Research and Development in Intelligent Systems XXI, pp. 101–114 (2005)

    Google Scholar 

  4. Burke, R.D., Hammond, K.J., Young, B.C.: The FindMe Approach to Assisted Browsing. IEEE Expert, 32–40 (1997)

    Google Scholar 

  5. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the Dynamic Generation of Compound Critiques in Conversational Recommender Systems. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 176–184. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Zhang, J., Pu, P.: A Comparative Study of Compound Critique Generation in Conversational Recommender Systems. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 234–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. McCarthy, K., Salem, Y., Smyth, B.: Experience-Based Critiquing: Reusing Critiquing Experiences to Improve Conversational Recommendation. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 480–494. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Rokach, L.: Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics & Data Analysis (2009) (in press, corrected proof)

    Google Scholar 

  9. Bell, R.M., Koren, Y., Volinsky, C.: The BellKor solution to the Netflix Prize (2007)

    Google Scholar 

  10. Piotte, M., Chabbert, M.: The Pragmatic Theory Solution to the Netflix Grand Prize. Netflix Prize Documentation (2009)

    Google Scholar 

  11. Töscher, A., Jahrer, M.: The BigChaos Solution to the Netflix Prize 2008 (2008)

    Google Scholar 

  12. Burke, R.D., Hammond, K.J., Young, B.C.: Knowledge-Based Navigation of Complex Information Spaces. In: AAAI/IAAI, vol. 1, pp. 462–468 (1996)

    Google Scholar 

  13. Salamó, M., Smyth, B., McCarthy, K., Reilly, J., McGinty, L.: Reducing critiquing repetition in conversational recommendation. In: Proceedings of the IJCAI 2005 Workshop on Multi-Agent Information Retrieval and Recommender Systems, pp. 55–61 (2005)

    Google Scholar 

  14. Smyth, B., McGinty, L.: An Analysis of Feedback Strategies in Conversational Recommender Systems. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Cognitive Science (AICS 2003), pp. 211–216 (2003)

    Google Scholar 

  15. Burke, R.D.: Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial Intelligence Review 18, 245–267 (2002)

    Article  Google Scholar 

  16. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley & Sons, New York (1976)

    Google Scholar 

  17. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. In: User Modeling and User-Adapted Interaction, pp. 1–26 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mandl, M., Felfernig, A. (2012). Improving the Performance of Unit Critiquing. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds) User Modeling, Adaptation, and Personalization. UMAP 2012. Lecture Notes in Computer Science, vol 7379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31454-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31454-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31453-7

  • Online ISBN: 978-3-642-31454-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics