Abstract
Conversational recommender systems allow users to learn and adapt their preferences according to concrete examples. Critiquing systems support such a conversational interaction style. Especially unit critiques offer a low cost feedback strategy for users in terms of the needed cognitive effort. In this paper we present an extension of the experience-based unit critiquing algorithm. The development of our new approach, which we call nearest neighbor compatibility critiquing, was aimed at increasing the efficiency of unit critiquing. We combine our new approach with existing critiquing strategies to ensemble-based variations and present the results of an empirical study that aimed at comparing the recommendation efficiency (in terms of the number of critiquing cycles) of ensemble-based solutions with individual critiquing algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
McCarthy, K., McGinty, L., Smyth, B.: Dynamic Critiquing: An Analysis of Cognitive Load. In: Proceedings of the 16th Irish Conference on Artificial Intelligence and Cognitive Science, pp. 19–28 (2005)
Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.: Evaluating compound critiquing recommenders: a real-user study. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 114–123 (2007)
Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental Critiquing. In: Research and Development in Intelligent Systems XXI, pp. 101–114 (2005)
Burke, R.D., Hammond, K.J., Young, B.C.: The FindMe Approach to Assisted Browsing. IEEE Expert, 32–40 (1997)
McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the Dynamic Generation of Compound Critiques in Conversational Recommender Systems. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 176–184. Springer, Heidelberg (2004)
Zhang, J., Pu, P.: A Comparative Study of Compound Critique Generation in Conversational Recommender Systems. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 234–243. Springer, Heidelberg (2006)
McCarthy, K., Salem, Y., Smyth, B.: Experience-Based Critiquing: Reusing Critiquing Experiences to Improve Conversational Recommendation. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 480–494. Springer, Heidelberg (2010)
Rokach, L.: Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics & Data Analysis (2009) (in press, corrected proof)
Bell, R.M., Koren, Y., Volinsky, C.: The BellKor solution to the Netflix Prize (2007)
Piotte, M., Chabbert, M.: The Pragmatic Theory Solution to the Netflix Grand Prize. Netflix Prize Documentation (2009)
Töscher, A., Jahrer, M.: The BigChaos Solution to the Netflix Prize 2008 (2008)
Burke, R.D., Hammond, K.J., Young, B.C.: Knowledge-Based Navigation of Complex Information Spaces. In: AAAI/IAAI, vol. 1, pp. 462–468 (1996)
Salamó, M., Smyth, B., McCarthy, K., Reilly, J., McGinty, L.: Reducing critiquing repetition in conversational recommendation. In: Proceedings of the IJCAI 2005 Workshop on Multi-Agent Information Retrieval and Recommender Systems, pp. 55–61 (2005)
Smyth, B., McGinty, L.: An Analysis of Feedback Strategies in Conversational Recommender Systems. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Cognitive Science (AICS 2003), pp. 211–216 (2003)
Burke, R.D.: Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial Intelligence Review 18, 245–267 (2002)
Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley & Sons, New York (1976)
Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. In: User Modeling and User-Adapted Interaction, pp. 1–26 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mandl, M., Felfernig, A. (2012). Improving the Performance of Unit Critiquing. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds) User Modeling, Adaptation, and Personalization. UMAP 2012. Lecture Notes in Computer Science, vol 7379. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31454-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-31454-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31453-7
Online ISBN: 978-3-642-31454-4
eBook Packages: Computer ScienceComputer Science (R0)