Nothing Special   »   [go: up one dir, main page]

Skip to main content

MRKDSBC: A Distributed Background Modeling Algorithm Based on MapReduce

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7367))

Included in the following conference series:

Abstract

Video surveillance is a widely used technology. Moving object detection is the most important content of video surveillance. Background modeling is an important method in moving object detection. However, background modeling algorithm is usually computationally intensive when the size of video is large. Kernel density estimation method based on Chebyshev inequality (KDSBC) is a new background modeling algorithm. This paper present MRKDSBC based on MapReduce which is a distributed programming model. Further more, we prove the correctness of the algorithm theoretically and implement it on Hadoop platform. Finally, we compare it with traditional algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Collins, R.T., Lipton, A.J., Kanade, T.: Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 745–746 (2000)

    Article  Google Scholar 

  2. Versavel, J.: Road safety through video detection. Intelligent, 1999. In: Proceedings of IEEE/IEEJ/JSAI International Conference on Transportation Systems, pp. 753–757 (1999)

    Google Scholar 

  3. Gang, L., et al.: New moving target detection method based on background differencing and coterminous frames differencing. Chinese Journal of Scientific Instrument 22(8), 961–964 (2006)

    Google Scholar 

  4. Jie, L., et al.: Applications of MPI parallel-computing on image processing. Infrared Laser Engineering 33(5), 496–499 (2004)

    Google Scholar 

  5. Plimpton, S.J., Devine, K.D.: MapReduce in MPI for Large-scale graph algorithms. Parallel Computing 37(9), 610–632 (2011)

    Article  Google Scholar 

  6. Hoefler, T., Lumsdaine, A., Dongarra, J.: Towards Efficient MapReduce Using MPI. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) PVM/MPI. LNCS, vol. 5759, pp. 240–249. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  8. Hadoop: Open source implementation of MapReduce, http://hadoop.apache.org/

  9. Karmann, K.P., Brandt, A.: Moving object recognition using an adaptive background memory. In: Proceedings of the 3rd International Workshop on Time-Varying Image Processing and Moving Object Recognition 2, pp. 289–296 (1990)

    Google Scholar 

  10. Kilger, M.: A shadow handler in a video-based real-time traffic monitoring system. In: Proceedings IEEE Workshop on Applications of Computer Vision, pp. 11–18 (1992)

    Google Scholar 

  11. Keith, W., et al.: Astronomy in the Cloud: Using MapReduce for Image Coaddition. In: 20th Annual Conference on Astronomical Data Analysis Software and Systems, Boston 2010. Astronomical Society of the Pacific Conference Series, vol. 442, pp. 93–96 (2011)

    Google Scholar 

  12. Alham, N.K., et al.: A MapReduce-based distributed SVM algorithm for automatic image annotation. Computers and Mathematics with Applications 62(7), 2801–2811 (2011)

    Article  MATH  Google Scholar 

  13. Lv, Z., Hu, Y., Zhong, H., Wu, J., Li, B., Zhao, H.: Parallel K-Means Clustering of Remote Sensing Images Based on MapReduce. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010. LNCS, vol. 6318, pp. 162–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Bo, L., Hui, Z., Zhenhua, L.: Parallel ISODATA Clustering of Remote Sensing Images Based on MapReduce. In: 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 380–383 (2010)

    Google Scholar 

  15. Wei, P., et al.: Evaluating Large Graph Processing in MapReduce Based on Message Passing. Chinese Journal of Computers 34(10), 1768–1784 (2011)

    Article  Google Scholar 

  16. Yanfeng, Z., et al.: iMapReduce: A distributed computing framework for iterative computation. In: 2011 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, pp. 1112–1121 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wan, C., Wang, C., Zhang, K. (2012). MRKDSBC: A Distributed Background Modeling Algorithm Based on MapReduce. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31346-2_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31345-5

  • Online ISBN: 978-3-642-31346-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics